RLC Bridge (2-6-2021)

A D C DC voltage source V S V_S supplies an R L C RLC circuit as shown below. At time t = 0 t = 0 , the capacitors and inductors are de-energized. I S ( t ) I_S(t) is the current flowing out of the source.

Let I S 0 I_{S 0} and I S I_{S \infty} be the values of I S ( t ) I_S(t) at t = 0 t = 0 and t = t = \infty respectively. Let I S m a x I_{Smax} and I S m i n I_{Smin} be the largest and smallest values of I S ( t ) I_S(t) between t = 0 t = 0 and t = t = \infty .

Enter your answer as the product of I S 0 I_{S 0} , I S I_{S \infty} , I S m a x I_{Smax} , and I S m i n I_{Smin} .

Details and Assumptions:
1) V S = 10 V_S = 10
2) R 1 = R 2 = R 3 = L 1 = L 2 = C 1 = C 2 = 1 R_1 = R_2 = R_3 = L_1 = L_2 = C_1 = C_2 = 1


The answer is 705.02.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Karan Chatrath
Feb 7, 2021

Been a while since I had a go at one of these circuit problems. This was fun.

Circuit equations as per Kirchoff's laws:

Q ˙ C 1 = I C 1 ( 1 ) \dot{Q}_{C1} = I_{C1} \dots (1) Q ˙ C 2 = I C 2 ( 2 ) \dot{Q}_{C2} = I_{C2} \dots (2) I S = I L 1 + I R 1 ( 3 ) I_S = I_{L1} + I_{R1} \dots (3) I L 1 = I C 1 + I C 2 ( 4 ) I_{L1} = I_{C1} + I_{C2} \dots (4) I L 2 = I R 1 + I C 1 ( 5 ) I_{L2} = I_{R1} + I_{C1} \dots (5) L 1 I ˙ L 1 + R 3 I C 2 + Q C 2 C 2 = V S ( 6 ) L_1 \dot{I}_{L1} + R_3 I_{C2} + \frac{ Q_{C2}}{C_2}=V_S \dots (6) L 1 I ˙ L 1 + Q C 1 C 1 = R 1 I R 1 ( 7 ) L_1 \dot{I}_{L1} + \frac{ Q_{C1}}{C_1} = R_1I_{R1} \dots (7) R 3 I C 2 + Q C 2 C 2 = R 2 I L 2 + L 2 I ˙ L 2 + Q C 1 C 1 ( 8 ) R_3 I_{C2} + \frac{ Q_{C2}}{C_2} = R_2 I_{L2} + L_2 \dot{I}_{L2} + \frac{ Q_{C1}}{C_1} \dots (8)

Now eliminating I R 1 I_{R1} in (7) using (3):

L 1 I ˙ L 1 + Q C 1 C 1 = R 1 ( I L 2 Q ˙ C 1 ) ( 9 ) L_1 \dot{I}_{L1} + \frac{ Q_{C1}}{C_1} = R_1(I_{L2} - \dot{Q}_{C1} )\dots (9)

(2) can also be written as:

Q ˙ C 1 + Q ˙ C 2 = I L 1 \dot{Q}_{C1}+\dot{Q}_{C2}=I_{L1}

Using (2), (6), (8) and (9) to construct a system of ODE's in matrix form gives:

[ L 1 0 0 R 3 L 1 0 R 1 0 0 L 2 0 R 3 0 0 1 1 ] [ I ˙ L 1 I ˙ L 2 Q ˙ C 1 Q ˙ C 2 ] = [ 0 0 0 1 / C 2 0 R 1 1 / C 1 0 0 R 2 1 / C 1 1 / C 2 1 0 0 0 ] [ I L 1 I L 2 Q C 1 Q C 2 ] + [ 1 0 0 0 ] V S \left[\begin{matrix} L_1&0&0&R_3\\L_1&0&R_1&0\\0&-L_2&0&R_3\\0&0&1&1 \end{matrix} \right] \left[\begin{matrix} \dot{I}_{L1}\\\dot{I}_{L2}\\\dot{Q}_{C1}\\\dot{Q}_{C2} \end{matrix} \right] = \left[\begin{matrix} 0&0&0&-1/C_2\\0&R_1&-1/C_1&0\\0&R_2&1/C_1&1/C_2\\1&0&0&0 \end{matrix} \right] \left[\begin{matrix} I_{L1}\\I_{L2}\\Q_{C1}\\Q_{C2} \end{matrix} \right] + \left[\begin{matrix} 1\\0\\0\\0 \end{matrix} \right]V_S Let:

A = [ L 1 0 0 R 3 L 1 0 R 1 0 0 L 2 0 R 3 0 0 1 1 ] A = \left[\begin{matrix} L_1&0&0&R_3\\L_1&0&R_1&0\\0&-L_2&0&R_3\\0&0&1&1 \end{matrix} \right] B = [ 0 0 0 1 / C 2 0 R 1 1 / C 1 0 0 R 2 1 / C 1 1 / C 2 1 0 0 0 ] B = \left[\begin{matrix} 0&0&0&-1/C_2\\0&R_1&-1/C_1&0\\0&R_2&1/C_1&1/C_2\\1&0&0&0 \end{matrix} \right] C = [ 1 0 0 0 ] C = \left[\begin{matrix} 1\\0\\0\\0 \end{matrix} \right] x = [ I L 1 I L 2 Q C 1 Q C 2 ] x = \left[\begin{matrix} I_{L1}\\I_{L2}\\Q_{C1}\\Q_{C2} \end{matrix} \right]

A x ˙ = B x + C V S \implies A \dot{x} = Bx + CV_S x ( 0 ) = [ 0 0 0 0 ] x(0) = \left[\begin{matrix} 0\\0\\0\\0 \end{matrix} \right]

Explicit Euler numerical integration yields:

x k + 1 = x k + δ t ( A 1 ( B x k + C V S ) ) x_{k+1} = x_{k} + \delta t \left(A^{-1}(Bx_k + CV_S)\right)

Iterating this in a loop using a short script of code yields the required answer. To get I S I_S , a linear combination of appropriate states and their derivatives need to be taken keeping in mind equation (3). For a step size of 1 0 5 s e c 10^{-5} \ \mathrm{sec} , the answer I get is 704.95 \boxed{704.95} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...