RMO 1994

The integer solutions for x x & y y in the equations

5 x ( 1 + 1 x 2 + y 2 ) = 12 5x (1+\frac{1}{x^2+y^2}) = 12 & 5 y ( 1 1 x 2 + y 2 ) = 4 5y (1-\frac{1}{x^2+y^2}) = 4 ,

are a a & b b . Find a + b a + b .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Jack D'Aurizio
Apr 15, 2014

From 5 x = ( 12 5 x ) ( x 2 + y 2 ) , 5 y = ( 4 + 5 y ) ( x 2 + y 2 ) 5x=(12-5x)(x^2+y^2),\quad 5y=(4+5y)(x^2+y^2) it follows that x y = 12 5 x 4 + 5 y \frac{x}{y}=\frac{12-5x}{4+5y} , or: ( 5 x 6 ) ( 5 y 2 ) = 12. (5x-6)(5y-2)=12. Since we are looking for integer solutions, we have to write twelve as a product of two integers, the first one congruent to 4 ( m o d 5 ) 4\pmod{5} and the second one congruent to 3 ( m o d 5 ) 3\pmod{5} , so the only possibilities are 4 3 4\cdot 3 and ( 1 ) ( 12 ) (-1)\cdot(-12) and the only integer solution is ( x , y ) = ( 2 , 1 ) (x,y)=(2,1) .

Good explanation

Prabhakara A - 2 years, 5 months ago

Wow!!!!!! wonderful thinking. I solve it by trial.

Arghyanil Dey - 7 years, 1 month ago
Zubin Arya
Apr 30, 2014

L e t z = x + i y T h e n z z ˉ = x 2 + y 2 M u l t i p l y s e c o n d e q u a t i o n b y i a n d a d d i t t o f i r s t e q u a t i o n t h e n w e h a v e z + z z z ˉ ˉ = 12 + 4 i 5 o r z + 1 z = 12 + 4 i 5 S o l v i n g w e g e t z = 2 i 5 o r 2 + i h e n c e t o e n s u r e i n t e g r a l v a l u e s f o r x a n d y w e h a v e z = 2 + i h e n c e x = 2 a n d y = 1 t h e r e f o r e x + y = 3 i s t h e a n s w e r Let\quad z=x+iy\\ Then\quad z\bar { z } ={ x }^{ 2 }+{ y }^{ 2 }\\ Multiply\quad second\quad equation\quad by\quad i\quad and\quad add\quad it\quad to\quad first\quad equation\quad then\quad we\quad have\\ z+\bar { \frac { z }{ z\bar { z } } } =\frac { 12+4i }{ 5 } \quad or\quad z+\frac { 1 }{ z } =\frac { 12+4i }{ 5 } \quad Solving\quad we\quad get\quad z=\frac { 2-i }{ 5 } \quad or\quad 2+i\quad hence\quad to\quad ensure\\ integral\quad values\quad for\quad x\quad and\quad y\quad we\quad have\quad z=2+i\quad hence\quad x=2\quad and\quad y=1\quad therefore\quad x+y=3\quad is\quad the\quad answer

How did you think this way......what made you think this???

Max B - 7 years, 1 month ago

he i didn't understand the second step please elaborate how it's done !! i appreciate your thinking buddy!!!

Rishabh Jain - 6 years, 8 months ago
Saurabh Mallik
May 1, 2014

From solving:

5 x ( 1 + 1 x 2 + y 2 ) = 12 5x(1+\frac{1}{x^{2}+y^{2}}) = 12 , 5 x ( 1 1 x 2 + y 2 ) = 4 , 5x(1-\frac{1}{x^{2}+y^{2}}) = 4

We get x = 2 x=2 and y = 1 y=1

So, a = 2 a=2 and b = 1 b=1

Thus, the answer is: a + b = 2 + 1 = 3 a+b=2+1=\boxed{3}

hey its basically asking how these equations are solved and you just directly inferred that the solution is ( 2 , 1 ) (2,1) . we want a solution !!

Rishabh Jain - 6 years, 8 months ago
Barr Shiv
Dec 10, 2018

set x^2+y^2=a and solve the 2 equations and tind the parralel solutions

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...