⎩ ⎪ ⎨ ⎪ ⎧ x + y + z = 2 ( x + y ) ( y + z ) + ( y + z ) ( z + x ) + ( z + x ) ( x + y ) = 1 x 2 ( y + z ) + y 2 ( z + x ) + z 2 ( x + y ) = − 6
How many integer solutions exist for that satisfy the equations above?
Details and Assumptions :
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
even SHORTER(1st part copied from samarpit's ans)
x+y+z=2..............let this be A
From Equation 2: (x+y)(y+z) + (y+z)(z+x) + (z+x)(x+y) = 1
=> (2-z)2-x) +(2-x)(2-y) + (2-y)(2-z) = 1
With further solving we get
xy + yz + zx = -3...........let this be B
Now, squaring Equation 1 : x^2 + y^2 +z^2 + 2(xy+yz+zx) = 4
Therefore, x^2 + y^2 +z^2 = 4+6=10
Now in equation (3)
x^2(2-x) + y^2(2-y) + z^2(2-z) = -6
Further solving we get,
x^3+y^3+z^3 = 26
Subtracting 3xyz from both sides,
(x+y+z){x^2 + y^2 +z^2 - (xy + yz + zx)} = 26 - 3xyz
=> 2(10+3) = 26 - 3xyz
=> xyz = 0 ........C
now look at A,B,C
asuume x,y,z are roots of a cubic eqn.then from viete's formulas cubic is
u^3-2u^2-3u=0 u(u-3)(u+1)=0
three distinct roots.from theory of permutation ANS is 3P3 = 3! = 6 ANS
(x + y)(y + z) + (y + z)(z + x) + (z + x)(x + y) = 1
(x + y)(2 - x) + (2 - x)(2 - y) + (2 - y)(x+y) = 1
(x + y)² + (x - 2)² + (y - 2)² = 14
1² + 2² + 3² = 14
x = 0, y = -1, z = 3
x = 0, y = 3, z = -1
x = -1, y = 0, z = 3
x = -1, y = 3, z = 0
x = 3, y = -1, z = 0
x = 3, y = 0, z = -1
Problem Loading...
Note Loading...
Set Loading...
From Equation 2:
( x + y ) ( y + z ) + ( y + z ) ( z + x ) + ( z + x ) ( x + y ) = 1
=> ( 2 − z ) 2 − x ) + ( 2 − x ) ( 2 − y ) + ( 2 − y ) ( 2 − z ) = 1
With further solving we get,
x y + y z + z x = − 3 . . . . ( i )
Now, squaring Equation 1 : x 2 + y 2 + z 2 + 2 ( x y + y z + z x ) = 4
Therefore, x 2 + y 2 + z 2 = 4 + 6 = 1 0
Now in equation (3)
x 2 ( 2 − x ) + y 2 ( 2 − y ) + z 2 ( 2 − z ) = − 6
Further solving we get,
x 3 + y 3 + z 3 = 2 6
Subtracting 3xyz from both sides,
( x + y + z ) ( x 2 + y 2 + z 2 ) − ( x y + y z + z x ) = 2 6 − 3 x y z
=> 2 ( 1 0 + 3 ) = 2 6 − 3 x y z
=> x y z = 0
C a s e 1 : when all 3 are 0
x + y + z is not equal to 2 from equation 1.
C a s e 2 : when any 2 are 0
x 2 + y 2 + z 2 = 4 which is not equal to 10
From equation 1,2
C a s e 3 : when any one of them is 0
The following combination of ( x , y , z ) arise : ( 0 , 3 , − 1 ) , ( 0 , − 1 , 3 ) , ( 3 , 0 , − 1 ) , ( − 1 , 0 , 3 ) , ( − 1 , 3 , 0 ) , ( 3 , − 1 , 0 ) or simply 3 ! possible permutations.
Hence there are 6 integer solutions. :)