RMO 2016

Algebra Level 3

Let a , b a,b and c c be 3 distinct positive numbers such that their product is 1. Find the infimium value of

a 3 ( a b ) ( a c ) + b 3 ( b c ) ( b a ) + c 3 ( c a ) ( c b ) . \dfrac{a^3}{(a-b)(a-c)} + \dfrac{b^3}{(b-c)(b-a)} + \dfrac{c^3}{(c-a)(c-b)} .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Viki Zeta
Oct 18, 2016

Follow up this solution, same question.

Anyway here again:

> a 3 ( a b ) ( a c ) + b 3 ( b a ) ( b c ) + c 3 ( c a ) ( c b ) = a 3 ( a b ) ( a c ) b 3 ( a b ) ( b c ) + c 3 ( a c ) ( b c ) = a 3 ( b c ) b 3 ( a c ) + c 3 ( a b ) ( a b ) ( a c ) ( b c ) = a 3 b a 3 c b 3 a + b 3 c + c 3 a c 3 b ( a b ) ( a c ) ( b c ) = a 3 b b 3 a a 3 c + b 3 c + c 3 a c 3 b ) ( a b ) ( a c ) ( b c ) = a b ( a 2 b 2 ) c ( a 3 b 3 ) + c 3 ( a b ) ( a b ) ( a c ) ( b c ) = a b ( a + b ) ( a b ) c ( a b ) ( a 2 + a b + b 2 ) + c 3 ( a b ) ( a b ) ( a c ) ( b c ) = ( a b ) a b ( a + b ) c ( a 2 + a b + b 2 ) + c 3 ( a b ) ( a c ) ( b c ) = a 2 b + b 2 a a 2 c a b c b 2 c + c 3 ( a c ) ( b c ) = a 2 b a 2 c b 2 c + c 3 + b 2 a a b c ( a c ) ( b c ) = a 2 ( b c ) c ( b 2 c 2 ) + a b ( b c ) ( a c ) ( b c ) = a 2 ( b c ) c ( b + c ) ( b c ) + a b ( b c ) ( a c ) ( b c ) = a 2 c ( b + c ) + a b ( a c ) = a 2 b c c 2 + a b ( a c ) = a 2 c 2 b c + a b ( a c ) = ( a + c ) ( a c ) + b ( a c ) ( a c ) = a + b + c a 3 ( a b ) ( a c ) + b 3 ( b a ) ( b c ) + c 3 ( c a ) ( c b ) = a + b + c Using AM-GM inequality a + b + c 3 a b c 3 a b c = 1 a + b + c 3 1 a + b + c 3 a 3 ( a b ) ( a c ) + b 3 ( b a ) ( b c ) + c 3 ( c a ) ( c b ) = a + b + c 3 \dfrac{a^3}{(a-b)(a-c)} + \dfrac{b^3}{(b-a)(b-c)} + \dfrac{c^3}{(c-a)(c-b)}\\ = \dfrac{a^3}{(a-b)(a-c)} - \dfrac{b^3}{(a-b)(b-c)} + \dfrac{c^3}{(a-c)(b-c)} \\ = \dfrac{a^3(b-c) - b^3(a-c) + c^3(a-b)}{(a-b)(a-c)(b-c)} \\ = \dfrac{a^3b - a^3c - b^3a + b^3c + c^3a - c^3b}{(a-b)(a-c)(b-c)} \\ = \dfrac{a^3b - b^3a - a^3c + b^3c+c^3a - c^3b)}{(a-b)(a-c)(b-c)}\\ = \dfrac{ab(a^2 - b^2) -c(a^3 - b^3) + c^3(a-b)}{(a-b)(a-c)(b-c)} \\ = \dfrac{ab(a+b)(a-b) - c (a-b)(a^2 + ab +b^2) + c^3(a-b)}{(a-b)(a-c)(b-c)} \\ = (a-b)\dfrac{ab(a+b) - c(a^2 + ab + b^2) + c^3}{(a-b)(a-c)(b-c)} \\ = \dfrac{a^2b + b^2a - a^2c - abc - b^2c + c^3}{(a-c)(b-c)} \\ = \dfrac{a^2b - a^2c - b^2c + c^3 + b^2a - abc}{(a-c)(b-c)}\\ \\ = \dfrac{a^2(b-c) -c(b^2 - c^2) + ab(b-c)}{(a-c)(b-c)}\\ = \dfrac{a^2(b-c) - c(b+c)(b-c) + ab(b-c)}{(a-c)(b-c)}\\ = \dfrac{a^2 - c(b+c) + ab}{(a-c)} \\ = \dfrac{a^2 - bc - c^2 + ab}{(a-c)} \\ = \dfrac{a^2 - c^2 - bc + ab}{(a-c)} \\ = \dfrac{(a+c)(a-c) + b(a-c)}{(a-c)} \\ = a+b+c \\ \boxed{\therefore \dfrac{a^3}{(a-b)(a-c)} + \dfrac{b^3}{(b-a)(b-c)} + \dfrac{c^3}{(c-a)(c-b)} = a+b+c} \\ \text{Using AM-GM inequality} \\ \dfrac{a+b+c}{3} \ge \sqrt[3]{abc} \\ abc = 1 \\ \implies \dfrac{a+b+c}{3} \ge 1 \\ \implies a+b+c \ge 3 \\ \boxed{\therefore \dfrac{a^3}{(a-b)(a-c)} + \dfrac{b^3}{(b-a)(b-c)} + \dfrac{c^3}{(c-a)(c-b)} = a+b+c \ge 3}

As with any inequality, to find the minimium, we not only have to show that it is a lower bound, but we also have to show that it can indeed be achieved.

Particularly in this problem, because we require distinct values, hence we cannot achieve 3. In this problem, there is no minimum, though there is an infimium.

Calvin Lin Staff - 4 years, 7 months ago

Log in to reply

Yeah, the same case in my problem too. Thanks.

Viki Zeta - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...