RMO!

Geometry Level 4

Let A B C ABC be an isosceles triangle with A B = A C AB=AC and let I I be it's incentre, suppose B C = A B + A I BC=AB+AI ,find B A C \angle BAC (in degrees).


The answer is 90.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Adarsh Kumar
Oct 20, 2015

Motivation : \color{#D61F06}{\text{Motivation}}: Since we have been asked to find the value of an angle we will focus on angles and not sides.The first thing that comes to mind is the sine-rule.So we use that, In triangle ABC,we have, B C sin A = A B sin B B C A B = sin A sin B \text{In triangle ABC,we have,}\\ \dfrac{BC}{\sin A}=\dfrac{AB}{\sin B}\\ \Longrightarrow \dfrac{BC}{AB}=\dfrac{\sin A}{\sin B} .Let us keep that aside for now,and focus on the piece of information given to us, B C = A B + A I B C A B = 1 + A I A B BC=AB+AI\\ \Longrightarrow \dfrac{BC}{AB}=1+\dfrac{AI}{AB} ,we have divided by A B AB since we know B C A B \dfrac{BC}{AB} in terms of angles,now,if we can find the value of A I A B \dfrac{AI}{AB} in terms of angles we can have an equation in terms of angles.Now,how do we find the value of A I A B \dfrac{AI}{AB} ,that is the question.That can also be done with the help of sine-rule!just join B B and I I and apply it in the A B I \bigtriangleup{ABI} we have, A I A B = sin B 2 cos C 2 = tan B 2 \dfrac{AI}{AB}=\dfrac{\sin{\dfrac{B}{2}}}{\cos{\dfrac{C}{2}}}=\tan{\dfrac{B}{2}} ,now,substituting all the values in the equation we get, sin A sin B = 1 + tan B 2 \dfrac{\sin{A}}{\sin{B}}=1+\tan{\dfrac{B}{2}} .Now,it would certainly be easier if the equation had just one variable which we can do by substituting 18 0 2 B = A sin A = sin 2 B = 2 sin B cos B 180^{\circ}-2B=A \Longrightarrow \sin{A}=\sin{2B}=2\sin B\cos B ,hence we have, 2 cos B = 1 + tan B 2 2\cos B=1+\tan{\dfrac{B}{2}} ,now,let us try and convert cos B \cos B into tan B 2 \tan{\dfrac{B}{2}} ,we have, tan 2 B 2 = 1 cos B 1 + cos B Applying componendo and dividendo we have, 1 + tan 2 B 2 ( 1 tan B 2 ) ( 1 + tan B 2 ) = 1 cos B 1 + tan 2 B 2 ( 1 tan B 2 ) ( 2 cos B ) = 1 cos B 1 + tan 2 B 2 = 2 2 ( tan B 2 ) 2 ( tan B 2 ) = 1 tan 2 B 2 tan B = 1 ! B = 4 5 A = 9 0 \tan^2{\dfrac{B}{2}}=\dfrac{1-\cos{B}}{1+\cos{B}}\\ \text{Applying componendo and dividendo we have,}\\ \dfrac{1+\tan^2{\dfrac{B}{2}}}{(1-\tan{\dfrac{B}{2}})(1+\tan{\dfrac{B}{2}})}=\dfrac{1}{\cos{B}}\\ \Longrightarrow \dfrac{1+\tan^2{\dfrac{B}{2}}}{(1-\tan{\dfrac{B}{2}})(2\cos{B})}=\dfrac{1}{\cos{B}}\\ \Longrightarrow 1+\tan^2{\dfrac{B}{2}}=2-2(\tan{\dfrac{B}{2}})\\ \Longrightarrow 2(\tan{\dfrac{B}{2}})=1-\tan^2{\dfrac{B}{2}}\\ \Longrightarrow \tan{B}=1!\\ \Longrightarrow \angle B=45^{\circ}\\ \Longrightarrow \angle A=90^{\circ} .And done!

Moderator note:

I disagree with the stated motivation of "Since we have been asked to find the value of an angle we will focus on angles and not sides." Sometimes finding the (ratio of) sides can make it easier to calculate the angles.

@Calvin Lin i forgot to click on that button yet again.So sorry sir.If convenient could you please provide feedback?

Adarsh Kumar - 5 years, 7 months ago

Log in to reply

Below the motivation BC /Sin A= AB/Sin C. Should come

Arnav goel - 3 years, 8 months ago

Sir,i have mentioned that as here that seemed like the only way possible.

Adarsh Kumar - 5 years, 7 months ago

a Class ! !

Raven Herd - 5 years, 6 months ago
Nihar Mahajan
Oct 20, 2015

Since Δ A B C \Delta ABC is isosceles , B = C π = A + 2 C C = π A 2 \angle B = \angle C \Rightarrow \pi=\angle A+2\angle C \Rightarrow \angle C=\dfrac{\pi- A}{2} .

We know that B C = 2 R sin A , A B = 2 R sin C , A I = 4 R sin B 2 sin C 2 BC=2R\sin A \ , \ AB=2R\sin C \ , \ AI=4R\sin\dfrac{B}{2}\sin\dfrac{C}{2} . Thus , by given condition ,

2 R sin A = 2 R sin C + 4 R sin B 2 sin C 2 sin A = sin C + 2 sin 2 C 2 sin A = sin ( π A 2 ) + sin 2 ( π A 4 ) sin A = sin ( π 2 A 2 ) + sin 2 ( π A 4 ) sin 2 ( π A 4 ) = cos A 2 sin A 1 sin 2 ( π A 4 ) = 1 + cos A 2 sin A cos ( π A 2 ) = 1 + cos A 2 2 sin A 2 cos A 2 sin A 2 = 1 + cos A 2 2 sin A 2 cos A 2 sin A 2 cos A 2 + 2 sin A 2 cos A 2 = 1 sin A 2 cos A 2 + 2 sin A 2 cos A 2 = sin 2 A 2 + cos 2 A 2 sin A 2 cos A 2 = ( sin A 2 cos A 2 ) 2 ( sin A 2 cos A 2 ) ( sin A 2 cos A 2 1 ) = 0 \begin{aligned}&\Rightarrow 2R\sin A = 2R\sin C + 4R\sin\dfrac{B}{2}\sin\dfrac{C}{2} \\ &\Rightarrow \sin A = \sin C + 2\sin^2 \dfrac{C}{2} \\ &\Rightarrow \sin A =\sin\left(\dfrac{\pi- A}{2}\right) + \sin^2\left(\dfrac{\pi- A}{4}\right)\\ &\Rightarrow \sin A =\sin\left(\dfrac{\pi}{2}-\dfrac{ A}{2}\right) + \sin^2\left(\dfrac{\pi-A}{4}\right) \\ &\Rightarrow - \sin^2\left(\dfrac{\pi- A}{4}\right) = \cos\dfrac{ A}{2} - \sin A \\ &\Rightarrow 1 - \sin^2\left(\dfrac{\pi- A}{4}\right) = 1+\cos\dfrac{ A}{2} - \sin A \\ &\Rightarrow \cos\left(\dfrac{\pi- A}{2}\right) = 1+\cos\dfrac{ A}{2}-2\sin\dfrac{ A}{2}\cos\dfrac{ A}{2}\\ &\Rightarrow \sin\dfrac{ A}{2}= 1+\cos\dfrac{ A}{2}-2\sin\dfrac{ A}{2}\cos\dfrac{ A}{2}\\ &\Rightarrow \sin\dfrac{ A}{2} -\cos\dfrac{ A}{2}+2\sin\dfrac{ A}{2}\cos\dfrac{ A}{2}=1 \\ &\Rightarrow \sin\dfrac{ A}{2} -\cos\dfrac{ A}{2}+2\sin\dfrac{ A}{2}\cos\dfrac{ A}{2} = \sin^2\dfrac{ A}{2} +\cos^2\dfrac{ A}{2} \\ &\Rightarrow \sin\dfrac{ A}{2} -\cos\dfrac{ A}{2}= \left(\sin\dfrac{ A}{2} -\cos\dfrac{ A}{2}\right)^2 \\ &\Rightarrow \left(\sin\dfrac{ A}{2} -\cos\dfrac{ A}{2}\right)\left(\sin\dfrac{ A}{2} -\cos\dfrac{ A}{2}-1\right) =0 \end{aligned}

Case 1:

sin A 2 cos A 2 = 1 ( sin A 2 cos A 2 ) 2 = 1 1 2 sin A 2 sin A 2 = 1 sin A = 0 A = 18 0 n n Z \sin\dfrac{ A}{2} -\cos\dfrac{ A}{2}=1\Rightarrow \left(\sin\dfrac{ A}{2} -\cos\dfrac{ A}{2}\right)^2=1 \Rightarrow 1-2\sin\dfrac{A}{2}\sin\dfrac{A}{2}=1 \Rightarrow \sin A=0 \Rightarrow A=180^\circ n \ \forall n \in \mathbb{Z}

This case must be discarded since , there is no solution in 0 < A < 18 0 0^\circ < A < 180^\circ

Case 2:

sin A 2 cos A 2 = 0 sin A 2 = cos A 2 A 2 = 4 5 A = 9 0 0 < A < 18 0 \sin\dfrac{ A}{2} -\cos\dfrac{ A}{2}=0\Rightarrow \sin\dfrac{ A}{2} = \cos\dfrac{ A}{2} \Rightarrow \dfrac{A}{2}=45^\circ \Rightarrow A=90^\circ \quad \because 0^\circ< A < 180^\circ

Considering all the cases we have A = B A C = 9 0 \boxed{\angle A=\angle BAC=90^\circ}

Moderator note:

Good way of converting the equation into trigonometry and then pushing through the equations.

Ajit Athle
Oct 21, 2015

Let M the midpoint of BC. Then, AI/IM =2c/a (Angle Bisector Theorem) or AI/AM=2c/(a+2c). But AM=√(c²-a²/4); hence, AI=(√(c²-a²/4))(2c)/(a+2c) or AI= a -c =(√(c²-a²/4))(2c)/(a+2c) which simplifies to a²=2c². But b=c, hence a²=b²+c² or tr. ABC is a rt. angled triangle with angle A=90°

Nicely done!

Calvin Lin Staff - 5 years, 7 months ago

Did It The Same Way! :)

Prakhar Bindal - 5 years, 7 months ago
Henry Wan
Oct 22, 2015

S i n c e w e a r e a s k e d f o r t h e a n g l e n o t t h e s i d e s , W L O G , l e t A B = A C = 1 , A I = x T h e n , l e t t h e i n s c r i b e d c i r c l e c e n t r e d a t I w i t h r a d i u s y t o u c h A B , A C a n d B C a t M , N a n d R r e s p e c t i v e l y . G i v e n t h a t B C = 1 + x , b y p r o p e r t i e s o f i s o s . t r i a n g l e , w e h a v e B R = R C = 1 + x 2 B e s i d e s , b y t a n g e n t s f r o m e x t e r n a l p o i n t , w e h a v e B M = B R = 1 + x 2 a n d A M = 1 1 + x 2 = 1 x 2 C o n s i d e r A M I , u s i n g P y t h . T h e o r e m , w e h a v e y 2 + ( 1 x 2 ) 2 = x 2 ( 1 ) C o n s i d e r A R B , u s i n g P y t h . T h e o r e m , w e h a v e ( 1 + x 2 ) 2 + ( x + y ) 2 = 1 ( 2 ) F r o m ( 1 ) a n d ( 2 ) , w e h a v e x 2 + 2 x 1 = 0 I n A B C , A B 2 + A C 2 = 2 a n d B C 2 = ( 1 + x ) 2 = 1 + 2 x + x 2 B y c o n v e r s e o f P y t h T h e o r e m , t h e r e q u i r e d a n g l e i s 90 . Since\quad we\quad are\quad asked\quad for\quad the\quad angle\quad not\quad the\quad sides,\quad \\ WLOG,\quad let\quad AB=AC=1,\quad AI=x\\ \\ Then,\quad let\quad the\quad inscribed\quad circle\quad centred\quad at\quad I\quad with\quad radius\quad y\quad touch\quad AB,\quad AC\quad and\quad BC\quad at\quad M,\quad N\quad and\quad R\quad respectively.\\ Given\quad that\quad BC=1+x,\quad by\quad properties\quad of\quad isos.\quad triangle,\quad we\quad have\quad \\ BR=RC=\frac { 1+x }{ 2 } \\ Besides,\quad by\quad tangents\quad from\quad external\quad point,\quad we\quad have\\ BM=BR=\frac { 1+x }{ 2 } \quad and\quad AM=1-\frac { 1+x }{ 2 } =\frac { 1-x }{ 2 } \\ Consider\quad \triangle AMI,\quad using\quad Pyth.\quad Theorem,\quad we\quad have\\ { y }^{ 2 }+{ \left( \frac { 1-x }{ 2 } \right) }^{ 2 }={ x }^{ 2 }\quad \cdots \cdots (1)\\ \\ Consider\quad \triangle ARB,\quad using\quad Pyth.\quad Theorem,\quad we\quad have\\ { \left( \frac { 1+x }{ 2 } \right) }^{ 2 }+{ \left( x+y \right) }^{ 2 }=1\quad \cdots \cdots (2)\\ From\quad (1)\quad and\quad (2),\quad we\quad have\quad { x }^{ 2 }+2x-1=0\\ \\ In\quad \triangle ABC,\quad { AB }^{ 2 }+AC^{ 2 }=2\quad and\quad { BC }^{ 2 }=\left( 1+x \right) ^{ 2 }=1+2x+{ x }^{ 2 }\\ By\quad converse\quad of\quad Pyth\quad Theorem,\quad the\quad required\quad angle\quad is\quad { 90 }^{ \circ }.

Bhaskar Pandey
Sep 26, 2017

I thought of posting a solution, but Rohit Camfar's solution is exactly the same.

Huh? \color{#D61F06}{\text{Huh?}} No one actually got respect for the problem proposer. I know he just picked up a r i g h t right Δ A B C \Delta ABC and an i n c e n t e r incenter to find some results on inscribed \color{#20A900}{\text{inscribed}} and circumscribed \color{#20A900}{\text{circumscribed}} figures and f o r t u n a t e l y fortunately got a simple result. But at least respect the situation \color{#D61F06}{\text{situation}} . K . I . P . K . I . G . \large{ { \color{#20A900}{K.I.P.K.I.G.}}} C o n s t Const : Produce B A BA to D D such that B D BD = B I BI . Join D C DC and I C IC . Let A B C \angle ABC = 2 θ Now A B AB = B C BC => A \angle A = 90 θ 90-θ . => B I C \angle BIC = 90 90 + a n g l e A angle A / 2 = 135 135 - θ / 2 θ/2 But also, A B AB + A I AI = B D BD = B C BC . => D \angle D = 45 45 + θ / 2 θ/2 Then B D C I BDCI is a cyclic quadrilateral. Also, A D I \angle ADI = θ / 2 θ/2 => C D I \angle CDI = 45 45 + θ / 2 θ/2 - θ / 2 θ/2 = 45 45 . But Since B D C I BDCI is cyclic. C A I \angle CAI = C D I \angle CDI = 45 45 . => A \angle A = 90 d e g r e e s . degrees.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...