RMO Inequalities - 2

Algebra Level 2

( a 2 b + b 2 c + c 2 a ) ( a b 2 + b c 2 + c a 2 ) a 2 b 2 c 2 \large \dfrac{(a^2b+b^2c+c^2a)(ab^2+bc^2+ca^2)}{a^2b^2c^2}

If a , b a,b and c c are positive real numbers then the minimum value of the expression above.


Try part 1 here and part 3 here .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Nihar Mahajan
Oct 8, 2015

By A M G M AM-GM inequality ,

a 2 b + b 2 c + c 2 a 3 ( a 2 b ) ( b 2 c ) ( c 2 a ) 3 = a 3 b 3 c 3 3 a 2 b + b 2 c + c 2 a 3 a b c ( 1 ) a b 2 + b c 2 + c a 2 3 ( a b 2 ) ( b c 2 ) ( c a 2 ) 3 = a 3 b 3 c 3 3 a b 2 + b c 2 + c a 2 3 a b c ( 2 ) ( 1 ) × ( 2 ) ( a 2 b + b 2 c + c 2 a ) ( a b 2 + b c 2 + c a 2 ) 9 a 2 b 2 c 2 ( a 2 b + b 2 c + c 2 a ) ( a b 2 + b c 2 + c a 2 ) a 2 b 2 c 2 9 \large{\dfrac{a^2b+b^2c+c^2a}{3} \geq \sqrt[3]{(a^2b)(b^2c)(c^2a)} = \sqrt[3]{a^3b^3c^3} \Rightarrow a^2b+b^2c+c^2a \geq 3abc \dots (1) \\ \dfrac{ab^2+bc^2+ca^2}{3} \geq \sqrt[3]{(ab^2)(bc^2)(ca^2)} = \sqrt[3]{a^3b^3c^3} \Rightarrow ab^2+bc^2+ca^2 \geq 3abc \dots (2) \\ (1) \times (2) \Rightarrow (a^2b+b^2c+c^2a)(ab^2+bc^2+ca^2) \geq 9a^2b^2c^2 \\ \Rightarrow \dfrac{(a^2b+b^2c+c^2a)(ab^2+bc^2+ca^2)}{a^2b^2c^2} \geq \boxed{9}}

Or just multiply out: c y c l ( a 2 b c + b c a 2 ) + 3 9 \sum_{cycl}\left(\frac{a^2}{bc}+\frac{bc}{a^2}\right)+3\geq{9}

Otto Bretscher - 5 years, 8 months ago

Nice alternative +1!

Sravanth C. - 5 years, 8 months ago

Same thing using CS. I used that :3

Raushan Sharma - 5 years, 4 months ago
Sharky Kesa
Nov 11, 2016

Just to be different, I have a proof through Cauchy Schwarz.

( a 2 b + b 2 c + c 2 a ) ( a b 2 + b c 2 + c a 2 ) a 2 b 2 c 2 = ( a 2 b + b 2 c + c 2 a a b c ) ( a b 2 + b c 2 + c a 2 a b c ) = ( c y c a b ) ( c y c b a ) ( 1 + 1 + 1 ) 2 = 9 \begin{aligned} \dfrac {(a^2 b + b^2 c + c^2 a) (ab^2 + bc^2 + ca^2)}{a^2 b^2 c^2} &= \left ( \dfrac{a^2 b + b^2 c + c^2 a}{abc} \right ) \left ( \dfrac{a b^2 + b c^2 + c a^2}{abc} \right )\\ &= \left (\displaystyle \sum_{cyc} \dfrac{a}{b} \right ) \left (\displaystyle \sum_{cyc} \dfrac {b}{a} \right )\\ & \geq (1+1+1)^2\\ &= 9 \end{aligned}

Therefore, the minimum value of the expression is 9 9 .

Sravanth C.
Oct 8, 2015

Applying A M G M AM-GM on ( a c , b a , c b ) \left(\dfrac ac,\dfrac ba, \dfrac cb\right) : a c + b a + c b 3 a c × b a × c b 3 a 2 b + b 2 c + c 2 a 3 a b c \dfrac{\dfrac ac+\dfrac ba+ \dfrac cb}3\geq\sqrt[3]{\dfrac ac×\dfrac ba×\dfrac cb}\\a^2b+b^2c+c^2a\geq3abc

Similarly, a b 2 + b c 2 + c a 2 3 a b c ( a 2 b + b 2 c + c a ) ( a b 2 + b c 2 + c a 2 ) 9 a 2 b 2 c 2 ( a 2 b + b 2 c + c a ) ( a b 2 + b c 2 + c a 2 ) a 2 b 2 c 2 9 ab^2+bc^2+ca^2\geq3abc\\\implies(a^2b+b^2c+c^a)(ab^2+bc^2+ca^2)\geq9a^2b^2c^2\\\dfrac{(a^2b+b^2c+c^a)(ab^2+bc^2+ca^2)}{a^2b^2c^2}\geq9

Moderator note:

Simple standard approach.

It would have been difficult for you to find suitable terms like a c , b a , c b \dfrac{a}{c} , \dfrac{b}{a} , \dfrac{c}{b} to get desired things. Why not take a straight path? ;) xD

Nihar Mahajan - 5 years, 8 months ago

Log in to reply

I had been doing such problems, so I thought we must show different angle of view so I posted this. :)

Sravanth C. - 5 years, 8 months ago
Vishal Kumar
Nov 9, 2018

Use AM -HM inequality. First divide the firs expression of the numerator with the denominator.Then use AM-HM inequality.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...