RMO Inequalities - 3

Algebra Level 2

Let a , b , c , d a,b,c,d be four reals such that a + b + c + d = 1 a+b+c+d=1 . What is the minimum value of ( a 2 + b 2 + c 2 + d 2 ) ? (a^2+b^2+c^2+d^2) ?

Try part 1 here and part 2 here


The answer is 0.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Nihar Mahajan
Oct 8, 2015

Applying R M S A M RMS \geq AM

a 2 + b 2 + c 2 + d 2 4 a + b + c + d 4 a 2 + b 2 + c 2 + d 2 4 ( 1 4 ) 2 a 2 + b 2 + c 2 + d 2 1 4 × 1 4 × 4 = 1 4 = 0.25 \large{ \sqrt{\dfrac{a^2+b^2+c^2+d^2}{4}} \geq \dfrac{a+b+c+d}{4} \\ \Rightarrow \dfrac{a^2+b^2+c^2+d^2}{4} \geq \left( \dfrac{1}{4} \right)^2 \\ \Rightarrow a^2+b^2+c^2+d^2 \geq \dfrac{1}{4}\times \dfrac{1}{4}\times 4 = \dfrac{1}{4} = \boxed{0.25}}

What's the full form of R.M.S?

Abdur Rehman Zahid - 5 years, 8 months ago

Log in to reply

Click the word RMS in my solution.

Nihar Mahajan - 5 years, 8 months ago

Root mean square

Sravanth C. - 5 years, 8 months ago

It is a quite a popular inequality you must have heard it.

Sravanth C. - 5 years, 8 months ago

root mean square

Rendla Pranav - 9 months, 3 weeks ago
Sravanth C.
Oct 8, 2015

Apply Cauchy Schwartz inequality on < a , b , c , d > <a,b,c,d> and < 1 , 1 , 1 , 1 > <1,1,1,1> we get: ( a + b + c + d ) 2 ( a 2 + b 2 + c 2 + d 2 ) ( 1 + 1 + 1 + 1 ) 1 2 ( a 2 + b 2 + c 2 + d 2 ) 4 ( a 2 + b 2 + c 2 + d 2 ) 1 4 = 0.25 (a+b+c+d)^2\leq(a^2+b^2+c^2+d^2)(1+1+1+1)\\1^2\leq(a^2+b^2+c^2+d^2)4\\\implies(a^2+b^2+c^2+d^2)\geq\dfrac14=\boxed{0.25}

Note: You can generalize this to the n t h n^{th} term, i.e. i = 1 n a i 2 1 n \displaystyle\sum^n_{i=1}a_i^2\geq\dfrac1n

Moderator note:

Simple standard approach.

Same method but did a mistake and got it wrong . +1

Chirayu Bhardwaj - 5 years, 2 months ago

By Titu's Lemma, a 2 1 + b 2 1 + b 2 1 + d 2 1 ( a + b + c + d ) 2 4 \frac{{a}^{2}}{1} + \frac{{b}^{2}}{1} + \frac{{b}^{2}}{1} + \frac{{d}^{2}}{1} \ge \frac{{(a+b+c+d)}^{2}}{4}

And then we are done.

Titus lemma is a special case of Cauchy Schwartz so basically this solution is the same as the previous

Somaditya Santra - 3 years, 8 months ago

Log in to reply

True..but titu is easier to apply

Rudrayan Kundu - 2 years, 7 months ago
Shyam Patankar
Oct 14, 2018

By the AM-GM inequality, a^2+1/16 >=mod(a/2)>=a/2. Similarly, this can be done for the other quantities. Adding up, we get a^2+b^2+c^2+d^2+1/4>=(a+b+c+d)/2=1/2, implying a^2+b^2+c^2+d^2>=1/4. Hence the minimum is 1/4, with equality holding if a=b=c=d=1/4.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...