RMO Part -2 !

Algebra Level 5

Find integers x,y,z such that

x²z+y²z+4xy=40

x²+y²+xyz=20

Input your answer as the sum of all values of x,y,z .


The answer is 42.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Sep 15, 2015

{ x 2 z + y 2 z + 4 x y = 40 . . . ( 1 ) x 2 + y 2 + x y z = 20 . . . ( 2 ) \begin{cases} x^2z+y^2z+4xy = 40 & ...(1) \\ x^2+y^2 +xyz = 20 &...(2) \end{cases}

( 2 ) × z : x 2 z + y 2 z + x y z 2 = 20 z . . . ( 3 ) \begin{aligned} (2) \times z: \quad x^2z+y^2z +xyz^2 = 20z \quad \quad ...(3) \end{aligned}

( 1 ) ( 3 ) : 4 x y x y z 2 = 40 20 z x y ( 4 z 2 ) = 20 ( 2 z ) x y ( z + 2 ) ( z 2 ) = 20 ( z 2 ) x y ( z + 2 ) = 20 . . . ( 4 ) \begin{aligned} (1) - (3): \quad 4xy - xyz^2 & = 40-20z \\ xy(4-z^2) & = 20(2-z) \\ xy(z+2)(z-2) & = 20(z-2) \\ xy(z+2) & = 20 \quad \quad \quad \quad ...(4) \end{aligned}

( 2 ) = ( 4 ) : x 2 + y 2 + x y z = x y ( z + 2 ) x 2 2 x y + y 2 = 0 ( x y ) 2 = 0 x = y \begin{aligned} (2)=(4): \quad x^2+y^2+xyz & = xy(z+2) \\ x^2 -2xy +y^2 & = 0 \\ (x-y)^2 & = 0 \\ x & = y \end{aligned}

( 4 ) : x y ( z + 2 ) = x 2 ( z + 2 ) = 20 z = 20 x 2 2 \begin{aligned} (4): \quad xy(z+2) & = x^2(z+2) = 20 \\ \Rightarrow z & = \frac{20}{x^2} - 2 \end{aligned}

For integer z z the possible x = ± 1 , ± 2 x=\pm 1, \pm 2 and we have:

{ x = ± 1 z = 20 1 2 = 18 x = ± 2 z = 20 4 2 = 3 \begin{cases} x = \pm 1 & \Rightarrow z = \dfrac{20}{1} -2 = 18 \\ x = \pm 2 & \Rightarrow z = \dfrac{20}{4} -2 = 3\end{cases}

Therefore, the sum of all x x , y y and z z is 2 2 + 3 1 1 + 18 + 1 + 1 + 18 + 2 + 2 + 3 = 42 -2-2+3-1-1+18+1+1+18+2+2+3 = \boxed{42}

Naitik Sanghavi
Sep 14, 2015

x²z+y²z+4xy=40 .......(1)

x²+y²+xyz=20 ....(2)

Multiply (2) by 2 and subtract it from (1)

x²z+y²z+4xy-2x²-2y²-2xyz=0

x²z+y²z-2xyz-2(x²+y²-2xy)=0

z(x-y)²-2(x-y)²=0

(x-y)²(z-2)=0

So, z=2 or x=y .

But if we substitute z=2 in (1) we see that it does not satisfy the given conditions. Thus neglect z=2

Now, x=y substitute this in (1) or (2) we get ,

(x,y,z)=(2,2,3);(-2,-2,3);(1,1,18);(-1,-1,18)

Thus ,sum of all values of x,y,z =2+2+3-2-2+3+1+1-1-1+18+18=42

Sahil Goyat
Sep 25, 2020

is it z or 2

Daksh Mor - 8 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...