RMO Practice problem 11

Algebra Level 4

Find the minimum value of x 2 + y 2 z + y 2 + z 2 x + x 2 + z 2 y \frac{x^{2}+y^{2}}{z}+\frac{y^{2}+z^{2}}{x}+\frac{x^{2}+z^{2}}{y} subject to x + y + z = 1012 x+y+z=1012 and x , y , z > 0 x,y,z>0 .


The answer is 2024.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Duybao Van
Nov 2, 2015

P = x 2 + y 2 z + y 2 + z 2 x + x 2 + z 2 y \Large \frac{x^{2} + y^{2}}{z} + \frac{y^{2} + z^{2}}{x} + \frac{x^{2} + z^{2}}{y}

= x 2 z + y 2 z + y 2 x + z 2 x + x 2 y + z 2 y \Large \frac{x^{2}}{z} + \frac{y^{2}}{z} + \frac{y^{2}}{x} + \frac{z^{2}}{x} + \frac{x^{2}}{y} + \frac{z^{2}}{y}

Using Cauchy Schwartz inequality in Engel form, We have

P ( x + x + y + y + z + z ) 2 2 x + 2 y + 2 z \Large \geqslant \frac{(x+x+y+y+z+z)^{2}}{2x+2y+2z}

= ( 2 ( x + y + z ) ) 2 2 ( x + y + z ) \Large \frac { { (2(x+y+z)) }^{ 2 } }{ 2(x+y+z) }

= 4 ( x + y + z ) 2 2 ( x + y + z ) \Large \frac { { 4(x+y+z) }^{ 2 } }{ 2(x+y+z) }

= 2 ( x + y + z ) \normalsize 2(x+y+z)

= 2 × 1012 \normalsize 2 \times 1012

= 2024 \Large \boxed{2024}

yep same way buddy upvoted

Kaustubh Miglani - 5 years, 6 months ago

What is the meaning of "Engel form"......I did it the same way but used "Titu's Lemma"... Are both same??

Samarth Agarwal - 5 years, 6 months ago

Log in to reply

Yeah Titu's Lemma and the Engel Form are the same thing, same form of the inequality :)

Hrishik Mukherjee - 5 years, 6 months ago
Sayandeep Ghosh
May 10, 2016

Yup same way ....that is done

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...