RMO Practice question 10

Algebra Level 5

Let η ( ω ) = ( ω 2 + 2015 ω 1 ) 2 + ( 2 ω + 2015 ) 2 \eta(ω)=(ω^{2}+2015ω-1)^{2}+(2ω+2015)^{2} Find the sum of all real solutions to the equation η ( ω ) = min ( η ( ω ) ) \eta(ω)=\min(\eta(ω))


The answer is -2015.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sarthak Behera
Sep 24, 2015

D i f f e r e n t i a t i n g , W e g e t 2 ( x 2 + 2015 x 1 ) ( 2 x + 2015 ) + 2 ( 2 x + 2015 ) ( 2 ) = 0 ( 2 x + 2015 ) ( x 2 + 2015 x + 1 ) = 0 2015 2 l i e s b e t w e e n r o o t s o f ( x 2 + 2015 x + 1 ) . S o , 2015 2 i s a l o c a l m a x i m u m w h i l e r o o t s o f ( x 2 + 2015 x + 1 ) a r e g l o b a l m i n i m u m . ( b y f i r s t d e r i v a t i v e t e s t ) T h u s b y v i e t a s , w e g e t s u m a s 2015 . Differentiating,\quad We\quad get\quad 2\left( { x }^{ 2 }+2015x-1 \right) \left( 2x+2015 \right) +2\left( 2x+2015 \right) \left( 2 \right) =0\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \Rightarrow \left( 2x+2015 \right) \left( { x }^{ 2 }+2015x+1 \right) =0\\ \quad -\frac { 2015 }{ 2 } \quad lies\quad between\quad roots\quad of\quad \left( { x }^{ 2 }+2015x+1 \right) .\\ So,\quad -\frac { 2015 }{ 2 } is\quad a\quad local\quad maximum\quad while\quad roots\quad of\quad \left( { x }^{ 2 }+2015x+1 \right) \quad are\quad global\quad minimum.\quad (by\quad first\quad derivative\quad test)\\ Thus\quad by\quad vieta's,\quad we\quad get\quad sum\quad as\quad \boxed { -2015 } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...