RMO Practice

Probability Level pending

What is the sum (in base 10) of all the natural numbers less than 64 which have exactly three ones in their base 2 representation.

This is a problem from Mumbai region Pre-RMO 2013.


The answer is 630.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rajen Kapur
Nov 16, 2015

Binary numbers from 000000 - 111111 represent 0 to 63 in base 10. Exactly 6 C 3 = 20 ^{6}C_3 = 20 numbers have three 0's and three 1's. Being a binary situation in respect of 0 and 1 there are exactly half of 20, i.e. 10 pairs that add - up to binary 111111 ( 6 3 10 63_{10} ). Hence they all add up to 630.

Akash Saha
Nov 16, 2015

W e a r e i n t e r e s t e d i n t h e n u m b e r s l e s s t h a n 64. N o t i c e t h a t 64 = 2 6 T h e r e f o r e , a l l t h e n u m b e r s l e s s t h a n 64 h a v e u t m o s t 6 d i g i t s i n t h e i r b i n a r y r e p r e s e n t a t i o n . N o w , w e h a v e t o p l a c e t h r e e o n e s w i t h i n s i x p l a c e s . T h e r e a r e 3 6 C = 6 ! 3 ! . 3 ! = 20 w a y s o f d o i n g s o . T h e r e f o r e , t h e r e a r e 20 n u m b e r s l e s s t h a n 64 w h i c h h a v e e x a c t l y t h r e e o n e s i n t h e i r b i n a r y r e p r e s e n t a t i o n . N o w , i f w e f i x o n e 1 i n t h e l e f t m o s t p l a c e i . e . 1 _ _ _ _ _ , w e h a v e t o f i l l t h e r e m a i n i n g t w o o n e s i n f i v e p l a c e s . T h e r e a r e 2 5 C = 5 ! 2 ! . 3 ! = 10 w a y s S o w e c a n c o n c l u d e t h a t t h e r e a r e t e n n u m b e r s w i t h 1 a s t h e l e f t m o s t d i g i t . N o w t h a t w e n e e d t h e s u m , t h e s u m i s e q u a l t o 111111 × 1010 N o t e : 1010 2 = 10 10 F o r t h e m u l t i p l i c a t i o n p a r t , 1 1 1 1 1 1 2 × 1 0 1 0 2 1 0 0 1 1 1 0 1 1 0 2 N o w , w e h a v e t o c o n v e r t t h e r e s u l t t o b a s e 10. 1001110110 2 = 630 We\quad are\quad interested\quad in\quad the\quad numbers\quad less\quad than\quad 64.\\ Notice\quad that\quad 64={ 2 }^{ 6 }\\ Therefore,\quad all\quad the\quad numbers\quad less\quad than\quad 64\quad have\quad utmost\quad 6\quad digits\quad in\quad their\quad binary\quad representation.\\ Now,\quad we\quad have\quad to\quad place\quad three\quad ones\quad within\quad six\quad places.\\ There\quad are\quad _{ 3 }^{ 6 }{ C } = \frac { 6! }{ 3!.3! } = 20\quad ways\quad of\quad doing\quad so.\\ Therefore,\quad there\quad are\quad 20\quad numbers\quad less\quad than\quad 64\quad which\quad have\quad exactly\quad three\quad ones\quad in\quad their\quad binary\quad representation.\\ Now,\quad if\quad we\quad fix\quad one\quad 1\quad in\quad the\quad leftmost\quad place\quad i.e.\quad 1\quad \_ \quad \_ \quad \_ \quad \_ \quad \_ \quad ,\quad we\quad have\quad to\quad fill\quad the\quad remaining\quad two\quad ones\quad in\quad five\quad places.\\ There\quad are\quad _{ 2 }^{ 5 }{ C }=\frac { 5! }{ 2!.3! } =10\quad ways\\ So\quad we\quad can\quad conclude\quad that\quad there\quad are\quad ten\quad numbers\quad with\quad 1\quad as\quad the\quad leftmost\quad digit.\\ Now\quad that\quad we\quad need\quad the\quad sum,\quad the\quad sum\quad is\quad equal\quad to\quad 111111\times 1010\\ Note\quad :\quad { 1010 }_{ 2 }\quad =\quad { 10 }_{ 10 }\\ For\quad the\quad multiplication\quad part,\quad { 1\quad 1\quad 1\quad 1\quad 1\quad 1 }_{ 2 }\quad \\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \times \quad \quad { 1\quad 0\quad 1\quad 0 }_{ 2 }\\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad ----------------\\ \qquad \qquad \qquad \qquad \qquad \quad { 1\quad 0\quad 0\quad 1\quad 1\quad 1\quad 0\quad 1\quad 1\quad 0 }_{ 2 }\\ Now,\quad we\quad have\quad to\quad convert\quad the\quad result\quad to\quad base\quad 10.\\ \quad { 1001110110 }_{ 2 }=\boxed{630}\\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...