RMO Question

Algebra Level 3

A = a 2 + 1 b + c + b 2 + 1 c + a + c 2 + 1 a + b \large A=\dfrac{a^2+1}{b+c}+\dfrac{b^2+1}{c+a}+\dfrac{c^2+1}{a+b}

If a a , b b , and c c are three positive real numbers , then find the minimum value of A A .


Source: RMO.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arulx Z
Jul 17, 2016

Applying AM-GM to a + b a+b , b + c b+c and c + a c+a and 1 a + b \frac{1}{a+b} , 1 b + c \frac{1}{b+c} and 1 c + a \frac{1}{c+a} ,

2 3 ( a + b + c ) ( a + b ) ( b + c ) ( c + a ) 3 \frac23 \left( a+b+c \right) \ge \sqrt [ 3 ]{ \left( a+b \right) \left( b+c \right) \left( c+a \right) }

1 3 ( 1 a + b + 1 b + c + 1 c + a ) 1 ( a + b ) ( b + c ) ( c + a ) 3 \frac { 1 }{ 3 } \left( \frac { 1 }{ a+b } +\frac { 1 }{ b+c } +\frac { 1 }{ c+a } \right) \ge \sqrt [ 3 ]{ \frac { 1 }{ \left( a+b \right) \left( b+c \right) \left( c+a \right) } }

On multiplying these inequalities,

2 9 ( a + b + c ) ( 1 a + b + 1 b + c + 1 c + a ) 1 a + b + c a + b + a + b + c b + c + a + b + c c + a 9 2 c a + b + 1 + a b + c + 1 + b c + a 9 2 a b + c + b c + a + c a + b 3 2 \begin{matrix} \frac { 2 }{ 9 } \left( a+b+c \right) \left( \frac { 1 }{ a+b } +\frac { 1 }{ b+c } +\frac { 1 }{ c+a } \right) & \ge & 1 \\ \frac { a+b+c }{ a+b } +\frac { a+b+c }{ b+c } +\frac { a+b+c }{ c+a } & \ge & \frac { 9 }{ 2 } \\ \frac { c }{ a+b } +1+\frac { a }{ b+c } +1+\frac { b }{ c+a } & \ge & \frac { 9 }{ 2 } \\ \frac { a }{ b+c } +\frac { b }{ c+a } +\frac { c }{ a+b } & \ge & \frac { 3 }{ 2 } \end{matrix}

Since a 2 + 1 2 a a^2+1 \ge 2a , a 2 + 1 b + c 2 a b + c \frac { { a }^{ 2 }+1 }{ b+c } \ge \frac { 2a }{ b+c } . Similarly, b 2 + 1 c + a 2 b c + a \frac { { b }^{ 2 }+1 }{ c+a } \ge \frac { 2b }{ c+a } and c 2 + 1 a + b 2 c a + b \frac { { c }^{ 2 }+1 }{ a+b } \ge \frac { 2c }{ a+b } . On adding them,

\frac { { a }^{ 2 }+1 }{ b+c } +\frac { { b }^{ 2 }+1 }{ c+a } +\frac { { c }^{ 2 }+1 }{ a+b } \ge \frac { 2a }{ b+c } +\frac{2b}{ c+a } +\frac { 2c }{ a+b }

As

a b + c + b c + a + c a + b 3 2 2 ( a b + c + b c + a + c a + b ) 3 \frac { a }{ b+c } +\frac { b }{ c+a } +\frac { c }{ a+b } \ge \frac { 3 }{ 2 } \\ 2\left( \frac { a }{ b+c } +\frac { b }{ c+a } +\frac { c }{ a+b } \right) \ge 3

Therefore by transitive property,

a 2 + 1 b + c + b 2 + 1 c + a + c 2 + 1 a + b 3 \frac { { a }^{ 2 }+1 }{ b+c } +\frac { { b }^{ 2 }+1 }{ c+a } +\frac { { c }^{ 2 }+1 }{ a+b } \ge 3

Also, when a = b = c = 1 a =b=c=1 , equality occurs, proving that 3 is indeed the minimum value.

How do you prove the third line?i know am gm inequality but i didnt understand could you please explain?

Mr Yovan - 4 years, 11 months ago

Log in to reply

I'm assuming that you are talking about this line 2 9 ( a + b + c ) ( 1 a + b + 1 b + c + 1 c + a ) 1 \frac { 2 }{ 9 } \left( a+b+c \right) \left( \frac { 1 }{ a+b } +\frac { 1 }{ b+c } +\frac { 1 }{ c+a } \right) \ge 1 .

To prove it, multiply this

2 3 ( a + b + c ) ( a + b ) ( b + c ) ( c + a ) 3 \frac { 2 }{ 3 } \left( a+b+c \right) \ge \sqrt [ 3 ]{ \left( a+b \right) \left( b+c \right) \left( c+a \right) }

and this

1 3 ( 1 a + b + 1 b + c + 1 c + a ) 1 ( a + b ) ( b + c ) ( c + a ) 3 \frac { 1 }{ 3 } \left( \frac { 1 }{ a+b } +\frac { 1 }{ b+c } +\frac { 1 }{ c+a } \right) \ge \sqrt [ 3 ]{ \frac { 1 }{ \left( a+b \right) \left( b+c \right) \left( c+a \right) } }

which will give you

( 2 3 ( a + b + c ) ) ( 1 3 ( 1 a + b + 1 b + c + 1 c + a ) ) ( 1 ( a + b ) ( b + c ) ( c + a ) 3 ) ( ( a + b ) ( b + c ) ( c + a ) 3 ) 2 9 ( a + b + c ) ( 1 a + b + 1 b + c + 1 c + a ) ( a + b ) ( b + c ) ( c + a ) ( a + b ) ( b + c ) ( c + a ) 3 2 9 ( a + b + c ) ( 1 a + b + 1 b + c + 1 c + a ) 1 \left( \frac { 2 }{ 3 } \left( a+b+c \right) \right) \left( \frac { 1 }{ 3 } \left( \frac { 1 }{ a+b } +\frac { 1 }{ b+c } +\frac { 1 }{ c+a } \right) \right) \ge \left( \sqrt [ 3 ]{ \frac { 1 }{ \left( a+b \right) \left( b+c \right) \left( c+a \right) } } \right) \left( \sqrt [ 3 ]{ \left( a+b \right) \left( b+c \right) \left( c+a \right) } \right) \\ \frac { 2 }{ 9 } \left( a+b+c \right) \left( \frac { 1 }{ a+b } +\frac { 1 }{ b+c } +\frac { 1 }{ c+a } \right) \ge \sqrt [ 3 ]{ \frac { \left( a+b \right) \left( b+c \right) \left( c+a \right) }{ \left( a+b \right) \left( b+c \right) \left( c+a \right) } } \\ \frac { 2 }{ 9 } \left( a+b+c \right) \left( \frac { 1 }{ a+b } +\frac { 1 }{ b+c } +\frac { 1 }{ c+a } \right) \ge 1

Arulx Z - 4 years, 11 months ago

Log in to reply

Thanks now i understand

Mr Yovan - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...