4 + lo g 2 ( sin 5 π ) + lo g 2 ( cos 1 0 π ) + lo g 2 ( sin 5 3 π ) + lo g 2 ( cos 1 0 3 π ) = lo g 2 K
What is K ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The given sum can be written as
lo g 2 1 6 + lo g 2 ( k = 1 ∏ k = 4 sin 5 k π )
There is an identity that I found here that states that
k = 1 ∏ k = n − 1 sin n k π = 2 n − 1 n
Therefore the given expression reduces to
lo g 2 1 6 + lo g 2 1 6 5 = lo g 2 5
Hence, K = 5
S = 4 + lo g 2 ( sin 5 π ) + lo g 2 ( cos 1 0 π ) + lo g 2 ( sin 5 3 π ) + lo g 2 ( cos 1 0 3 π ) = lo g 2 ( 1 6 sin 5 π cos 1 0 π sin 5 3 π cos 1 0 3 π ) = lo g 2 ( 1 6 cos 1 0 3 π cos 1 0 π cos 1 0 π cos 1 0 3 π ) = lo g 2 ( 4 ( cos 5 π + cos 5 2 π ) 2 ) = lo g 2 ( 4 ( cos 5 π − cos 5 3 π ) 2 ) = lo g 2 ( 4 ( 2 cos 5 π − 2 1 ) 2 ) = lo g 2 ⎝ ⎛ 4 ( 2 ⋅ 4 1 + 5 − 2 1 ) 2 ⎠ ⎞ = lo g 2 5 Since sin θ = cos ( 2 π − θ ) and 2 cos A cos B = cos ( A − B ) + cos ( A + B ) and cos θ = − cos ( π − θ ) and cos 5 π + c o s 5 3 π = 2 1 and cos 5 π = 4 1 + 5
The required answer K = 5 .
Problem Loading...
Note Loading...
Set Loading...
Since 4 = 4 log 2 = log 2⁴, rearranging we get
K = 2⁴ × sin π/5 × cos π/10 × sin 3π/5 × cos 3π/10
= 16(sin 36°)(cos 18°)(sin 108°)(cos 54°)
= 16(sin 36°)(sin 72°)(sin 72°)(sin 36°)
= [ 4(sin 36°)(sin 72°) ]²
= [ 4 × (√(5 – 2√5) / (√5 – 1)) × (√(5 + 2√5) / (√5 + 1)) ]²
= [ 4 × (√(5² – (2√5)²) / (√5² – 1²)) ]²
= [ 4 × (√(25 – 20) / (5 – 1)) ]²
= [ 4 × (√5 / 4) ]²
= √5²
= 5