Ro

Geometry Level 3

4 + log 2 ( sin π 5 ) + log 2 ( cos π 10 ) + log 2 ( sin 3 π 5 ) + log 2 ( cos 3 π 10 ) = log 2 K 4 + \log_2 \left(\sin \frac\pi5\right) + \log_2 \left(\cos \frac\pi{10} \right) + \log_2 \left( \sin \frac{3\pi}5 \right) + \log_2 \left( \cos \frac{3\pi}{10} \right) = \log_2 K

What is K ? K ?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Saya Suka
Jun 5, 2021

Since 4 = 4 log 2 = log 2⁴, rearranging we get
K = 2⁴ × sin π/5 × cos π/10 × sin 3π/5 × cos 3π/10
= 16(sin 36°)(cos 18°)(sin 108°)(cos 54°)
= 16(sin 36°)(sin 72°)(sin 72°)(sin 36°)
= [ 4(sin 36°)(sin 72°) ]²
= [ 4 × (√(5 – 2√5) / (√5 – 1)) × (√(5 + 2√5) / (√5 + 1)) ]²
= [ 4 × (√(5² – (2√5)²) / (√5² – 1²)) ]²
= [ 4 × (√(25 – 20) / (5 – 1)) ]²
= [ 4 × (√5 / 4) ]²
= √5²
= 5


Hosam Hajjir
Jun 11, 2021

The given sum can be written as

log 2 16 + log 2 ( k = 1 k = 4 sin k π 5 ) \displaystyle \log_2 16 + \log_2 ( \prod_{k = 1 }^{k=4} \sin \dfrac{k \pi}{5} )

There is an identity that I found here that states that

k = 1 k = n 1 sin k π n = n 2 n 1 \displaystyle \prod_{k = 1}^{k =n-1} \sin \dfrac{ k \pi }{n} = \dfrac{ n}{2^{n-1}}

Therefore the given expression reduces to

log 2 16 + log 2 5 16 = log 2 5 \log_2 16 + \log_2 \dfrac{5}{16} = \log_2 5

Hence, K = 5 K = 5

S = 4 + log 2 ( sin π 5 ) + log 2 ( cos π 10 ) + log 2 ( sin 3 π 5 ) + log 2 ( cos 3 π 10 ) = log 2 ( 16 sin π 5 cos π 10 sin 3 π 5 cos 3 π 10 ) Since sin θ = cos ( π 2 θ ) = log 2 ( 16 cos 3 π 10 cos π 10 cos π 10 cos 3 π 10 ) and 2 cos A cos B = cos ( A B ) + cos ( A + B ) = log 2 ( 4 ( cos π 5 + cos 2 π 5 ) 2 ) and cos θ = cos ( π θ ) = log 2 ( 4 ( cos π 5 cos 3 π 5 ) 2 ) and cos π 5 + c o s 3 π 5 = 1 2 = log 2 ( 4 ( 2 cos π 5 1 2 ) 2 ) and cos π 5 = 1 + 5 4 = log 2 ( 4 ( 2 1 + 5 4 1 2 ) 2 ) = log 2 5 \begin{aligned} S & = \small 4+\log_2 \left(\sin \frac \pi 5\right) + \log_2 \left(\cos \frac \pi {10} \right) +\log_2 \left(\sin \frac {3\pi} 5\right) + \log_2 \left(\cos \frac {3\pi}{10} \right) \\ & = \log_2 \left(16 \blue{\sin \frac \pi 5} \cos \frac \pi {10} \blue{\sin \frac {3\pi}5} \cos \frac {3\pi}{10} \right) & \small \blue{\text{Since }\sin \theta = \cos \left(\frac \pi 2 - \theta \right)} \\ & = \log_2 \left(16 \blue{\cos \frac {3\pi}{10}} \cos \frac \pi {10} \blue{\cos \frac \pi{10}} \cos \frac {3\pi}{10} \right) & \small \blue{\text{and }2 \cos A \cos B = \cos (A- B) + \cos (A+B)} \\ & = \log_2 \left(4 \left(\cos \frac \pi 5 + \cos \frac {2\pi}5 \right)^2 \right) & \small \blue{\text{and }\cos \theta = - \cos (\pi - \theta)} \\ & = \log_2 \left(4 \left(\cos \frac \pi 5 - \cos \frac {3\pi}5 \right)^2 \right) & \small \blue{\text{and }\cos \frac \pi 5 + cos \frac {3\pi}5 = \frac 12} \\ & = \log_2 \left(4 \left(2 \blue{\cos \frac \pi 5} - \frac 12 \right)^2 \right) & \small \blue{\text{and }\cos \frac \pi 5 = \frac {1+ \sqrt 5}4} \\ & = \log_2 \left(4 \left(2 \cdot \blue{\frac {1+\sqrt 5}4} - \frac 12 \right)^2 \right) \\ & = \log_2 5 \end{aligned}

The required answer K = 5 K=\boxed 5 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...