Double Integral Over The Whole Plane

Calculus Level 5

1 2 π R 2 ( q x 2 ) k e i ( p k ) x d x d k \large \dfrac{1}{2 \pi \hbar}\iint\limits_{\mathbb{R}^2} \left (q-\frac{x}{2} \right )ke^{\frac{i}{\hbar}(p-k)x} \, dx dk

Let be p p , q q are real parameters; \hbar denotes the Planck's constant, but for this exercise, you can treat it as another (real) parameter. Evaluate the integral above.

Clarification : R 2 \displaystyle \iint\limits_{\mathbb{R}^2} simply means \displaystyle \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} .

Hint : Fourier transform.

( p + q ) i (p+q)^{i \hbar} ( p + i q ) (p+iq)\hbar ( p q ) i (p-q)^{i \hbar} p q i 2 pq -\frac{i \hbar}{2} p q + i 2 pq +\frac{i \hbar}{2} ( p i q ) (p-iq)\hbar q p q^{\hbar}p p q p^{\hbar}q

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Patrick Bourg
Feb 9, 2016

Note : I define here the fourier transform of f ( x ) f(x) as F { f } ( ξ ) = f ( x ) e i x ξ \mathscr{F}\{f\}(\xi) = \int \ f(x) e^{-i x \xi} dx

Rearranging slightly :

I 1 2 π ( q 1 2 x ) k e i ( p k ) x d x d k = 1 2 π ( q 1 2 x ) e i p x k e i k x d k d x I \equiv \frac{1}{2 \pi \hbar}\iint (q-\frac{1}{2}x) k e^{\frac{i}{\hbar}(p-k)x}dx dk = \frac{1}{2 \pi \hbar} \int (q-\frac{1}{2}x) e^{\frac{i}{\hbar}px} \int \ k e^{-\frac{i}{\hbar}kx} dk dx

Now, we interpret the second integral as (up to a constant) the Fourier transform of the function k k . From standard property of FT, we know that : u C ( R ) , F { x u } ( ξ ) = i ξ F { u } ( ξ ) \forall u \in C^{\infty}(\mathbb{R}), \mathscr{F}\{xu\}(\xi) = i \partial_{\xi} \mathscr{F}\{u\} (\xi) .

Thus, in our case, the second integral yields :

k e i k x d k = 2 F { k } ( x ) = i 2 x F { 1 } ( x ) = 2 π i 2 x δ 0 ( x ) \int \ k e^{-\frac{i}{\hbar}kx} dk = \hbar^2 \mathscr{F}\{k\}(x) = i \hbar^2 \partial_{x} \mathscr{F}\{1\}(x) = 2\pi i \hbar^2 \partial_x \delta_0(x)

Ergo, returning back to our integral above, we have :

I = i ( q x 2 ) e i p x x δ 0 ( x ) d x = i [ x { ( q x 2 ) e i p x } ] x = 0 = p q + i 2 I = i \hbar \int (q-\frac{x}{2})e^{\frac{i}{\hbar}px} \partial_x \delta_0(x) dx= -i \hbar [ \partial_x \{(q-\frac{x}{2})e^{\frac{i}{\hbar}px} \} ] \Bigr|_{x=0} = pq + \frac{i \hbar}{2}

PS : if more details are asked, I can expand the argument here. By writing down the solution, I noticed that this is a quite tricky problem! Well done if you managed to get anywhere with this!

All such rockets science is beyond my reach.

asad bhai - 5 years, 3 months ago

Log in to reply

In fact, that sort of stuff is subtly related to phase space in quantum mechanics ;)

Patrick Bourg - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...