∫ 0 π ( 5 − 3 cos x ) 3 1 d x = β α π
In the above integral, if α and β are coprime positive integers, then find α + β .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@Chew-Seong Cheong Sir,can you please explain how did you change the limits of integration in step 2 ?
Log in to reply
t = tan x/2
When x = 0, t = 0.
When x = pi, t = tan (pi/2), infinity...
Log in to reply
Thanks!! @Paulo Filho
Thanks, Paulo.
Sir can you explain 4th to 5th step
Log in to reply
I have added some explanations. You should refer beta and gamma functions.
The complex substitution z = e i x gives I = ∫ 0 π ( 5 − 3 cos x ) 3 d x = 2 1 ∫ − π π ( 5 − 3 cos x ) 3 d x = 2 1 ∫ ∣ z ∣ = 1 ( 5 − 2 3 ( z + z − 1 ) ) 3 1 i z d z = i 4 ∫ ∣ z ∣ = 1 ( 3 z − 1 ) 3 ( 3 − z ) 3 z 2 d z Contour integration then gives I = 2 7 8 π R e s z = 3 1 ( z − 3 1 ) 3 ( 3 − z ) 3 z 2 = 2 7 4 π d z 2 d 2 ( 3 − z ) 3 z 2 ∣ ∣ ∣ ∣ ∣ z = 3 1 = 2 0 4 8 5 9 π making the answer 2 1 0 7 .
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 0 π ( 5 − 3 cos x ) 3 1 d x Let t = tan 2 x ⇒ d x = 1 + t 2 2 d t ⇒ cos x = 1 + t 2 1 − t 2 = ∫ 0 ∞ 4 ( 1 + 4 t 2 ) 3 ( 1 + t 2 ) 2 d t = 4 1 ∫ 0 ∞ ( 1 + 4 t 2 ) 3 1 + 2 t 2 + t 4 d t Let u = 4 t 2 ⇒ d t = 4 u 1 d u = 1 6 1 ∫ 0 ∞ ( 1 + 2 1 u + 1 6 1 u 2 ) u − 2 1 ( 1 + u ) − 3 d u = ∫ 0 ∞ 1 6 ( 1 + u ) 3 u − 2 1 + 3 2 ( 1 + u ) 3 u 2 1 + 2 5 6 ( 1 + u ) 3 u 2 3 d u Beta function B ( m + 1 , n − m − 1 ) = ∫ 0 ∞ ( 1 + u ) n u m d u = 1 6 B ( 2 1 , 2 5 ) + 3 2 B ( 2 3 , 2 3 ) + 2 5 6 B ( 2 5 , 2 1 ) = 2 5 6 Γ ( 3 ) 1 7 Γ ( 2 1 ) Γ ( 2 5 ) + 3 2 Γ ( 3 ) Γ 2 ( 2 3 ) Γ ( s ) is gamma function = 2 5 6 ( 2 ! ) 1 7 ( π ) ( 4 3 π ) + 3 2 ( 2 ! ) ( 2 1 π ) 2 = 2 0 4 8 5 9 π
⇒ α + β = 5 9 + 2 0 4 8 = 2 1 0 7
References: