Roaring Integral!

Calculus Level 5

0 π 1 ( 5 3 cos x ) 3 d x = α π β \large \displaystyle \int_{0}^{\pi} \dfrac{1}{(5-3\cos x)^3}\, dx = \dfrac{\alpha \pi}{\beta}

In the above integral, if α \alpha and β \beta are coprime positive integers, then find α + β \alpha + \beta .


The answer is 2107.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = 0 π 1 ( 5 3 cos x ) 3 d x Let t = tan x 2 d x = 2 1 + t 2 d t cos x = 1 t 2 1 + t 2 = 0 ( 1 + t 2 ) 2 4 ( 1 + 4 t 2 ) 3 d t = 1 4 0 1 + 2 t 2 + t 4 ( 1 + 4 t 2 ) 3 d t Let u = 4 t 2 d t = 1 4 u d u = 1 16 0 ( 1 + 1 2 u + 1 16 u 2 ) u 1 2 ( 1 + u ) 3 d u = 0 u 1 2 16 ( 1 + u ) 3 + u 1 2 32 ( 1 + u ) 3 + u 3 2 256 ( 1 + u ) 3 d u Beta function B ( m + 1 , n m 1 ) = 0 u m ( 1 + u ) n d u = B ( 1 2 , 5 2 ) 16 + B ( 3 2 , 3 2 ) 32 + B ( 5 2 , 1 2 ) 256 = 17 Γ ( 1 2 ) Γ ( 5 2 ) 256 Γ ( 3 ) + Γ 2 ( 3 2 ) 32 Γ ( 3 ) Γ ( s ) is gamma function = 17 ( π ) ( 3 4 π ) 256 ( 2 ! ) + ( 1 2 π ) 2 32 ( 2 ! ) = 59 π 2048 \begin{aligned} I & = \int_0^\pi \frac{1}{(5-3\cos x)^3} dx \quad \quad \small \color{#3D99F6}{\text{Let } t = \tan \frac{x}{2} \space \Rightarrow dx = \frac{2}{1+t^2}dt \space \Rightarrow \cos x = \frac{1-t^2}{1+t^2}} \\ & = \int_0^\infty \frac{(1+t^2)^2}{4(1+4t^2)^3} dt \\ & = \frac{1}{4} \int_0^\infty \frac{1+2t^2+t^4}{(1+4t^2)^3} dt \quad \quad \small \color{#3D99F6}{\text{Let }u = 4t^2 \space \Rightarrow dt = \frac{1}{4\sqrt{u}}du} \\ & = \frac{1}{16} \int_0^\infty \left(1+\frac{1}{2}u+\frac{1}{16}u^2\right)u^{-\frac{1}{2}}(1+u)^{-3} du \\ & = \int_0^\infty \frac {u^{-\frac 12}}{16(1+u)^3} + \frac {u^{\frac 12}}{32(1+u)^3} + \frac {u^{\frac 32}}{256(1+u)^3} du \quad \quad \small \color{#3D99F6}\text{Beta function }B(m+1, n-m-1) = \int_0^\infty \frac {u^m}{(1+u)^n} du \\ & = \frac{B\left(\frac{1}{2}, \frac{5}{2} \right)}{16} + \frac{B\left(\frac{3}{2}, \frac{3}{2} \right)}{32} + \frac{B\left(\frac{5}{2}, \frac{1}{2} \right)}{256} \\ & = \frac{17\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{5}{2} \right)}{256\Gamma\left(3\right)} + \frac{ \Gamma^2 \left(\frac{3}{2}\right)}{32\Gamma\left(3\right)} \quad \quad \small \color{#3D99F6} \Gamma(s) \text{ is gamma function} \\ & = \frac{17 \left(\sqrt{\pi}\right) \left(\frac{3}{4}\sqrt{\pi}\right)}{256(2!)} + \frac{\left(\frac{1}{2}\sqrt{\pi}\right)^2}{32(2!)} \\ & = \frac{59\pi}{2048} \end{aligned}

α + β = 59 + 2048 = 2107 \Rightarrow \alpha + \beta = 59 + 2048 = \boxed{2107}


References:

@Chew-Seong Cheong Sir,can you please explain how did you change the limits of integration in step 2 ?

shivam mishra - 5 years, 3 months ago

Log in to reply

t = tan x/2

When x = 0, t = 0.

When x = pi, t = tan (pi/2), infinity...

Paulo Filho - 5 years, 3 months ago

Log in to reply

Thanks!! @Paulo Filho

shivam mishra - 5 years, 3 months ago

Thanks, Paulo.

Chew-Seong Cheong - 5 years, 3 months ago

Sir can you explain 4th to 5th step

Patel Akshay - 4 years, 3 months ago

Log in to reply

I have added some explanations. You should refer beta and gamma functions.

Chew-Seong Cheong - 4 years, 3 months ago
Mark Hennings
Mar 11, 2017

The complex substitution z = e i x z = e^{ix} gives I = 0 π d x ( 5 3 cos x ) 3 = 1 2 π π d x ( 5 3 cos x ) 3 = 1 2 z = 1 1 ( 5 3 2 ( z + z 1 ) ) 3 d z i z = 4 i z = 1 z 2 d z ( 3 z 1 ) 3 ( 3 z ) 3 I \; = \; \int_0^\pi \frac{dx}{(5 - 3\cos x)^3} \; =\; \tfrac12\int_{-\pi}^\pi \frac{dx}{(5 - 3\cos x)^3} \; = \; \tfrac12\int_{|z|=1} \frac{1}{(5 - \frac32(z+z^{-1}))^3} \frac{dz}{iz} \; = \; \frac{4}{i} \int_{|z|=1} \frac{z^2\,dz}{(3z-1)^3(3-z)^3} Contour integration then gives I = 8 π 27 R e s z = 1 3 z 2 ( z 1 3 ) 3 ( 3 z ) 3 = 4 π 27 d 2 d z 2 z 2 ( 3 z ) 3 z = 1 3 = 59 π 2048 I \; = \; \frac{8\pi}{27} \mathrm{Res}_{z=\frac13}\frac{z^2}{(z-\frac13)^3(3-z)^3} \; = \; \frac{4\pi}{27} \frac{d^2}{dz^2}\frac{z^2}{(3-z)^3} \Bigg|_{z=\frac13} \; = \; \frac{59\pi}{2048} making the answer 2107 \boxed{2107} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...