Robot ant likes even numbers

Algebra Level pending

A robot-ant fell down at the bottom of a well which is H cm H\text{ cm} deep, and it wants to get out.

  • In its first trial, it climbed H 2 cm \frac{H}{2}\text{ cm} up and fell H 3 cm \frac{H}{3}\text{ cm} down.
  • In the second trial, it climbed H 4 cm \frac{H}{4}\text{ cm} up and fell H 5 cm , \frac{H}{5}\text{ cm}, and so on.
  • After 1 0 6 10^{6} trials, the robot-ant is now at a distance of 100.034 cm 100.034\text{ cm} from the bottom of the well.

What is the value of H ? \lceil H \rceil ?


The answer is 326.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Mar 29, 2018

From the description, we have:

H 2 H 3 + H 4 H 5 + + H 2 1 0 6 H 2 1 0 6 + 1 = 100.34 \frac{H}{2} - \frac{H}{3} + \frac{H}{4} - \frac{H}{5} + \dots + \frac{H}{2 \cdot 10^6} - \frac{H}{2 \cdot 10^6 + 1} = 100.34

Factoring H H , we have:

H ( 1 2 1 3 + 1 4 1 5 + + 1 2 1 0 6 1 2 1 0 6 + 1 ) = 100.34 H(\frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \dots + \frac{1}{2 \cdot 10^6} - \frac{1}{2 \cdot 10^6 + 1}) = 100.34

Since 1 2 1 3 + 1 4 1 5 + + 1 2 1 0 6 1 2 1 0 6 + 1 < 1 2 1 3 + 1 4 1 5 + = 1 ln 2 \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \dots + \frac{1}{2 \cdot 10^6} - \frac{1}{2 \cdot 10^6 + 1} \approx< \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \dots = 1 - \ln 2 we have

H ( 1 ln 2 ) > 100.34 H(1 - \ln 2) \approx> 100.34 and so H < 325.9999 H \approx< 325.9999 and H = 326 \lceil H \rceil = \boxed{326} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...