Rod / Disk Combo Dynamics

A uniform circular disk of radius R R and mass M M is situated on a flat rough surface, so that it can roll without slipping. A rod of length R R and mass M M is hinged at the center of the disk, so that it can rotate freely around the center of the disk (without rubbing against the disk surface). Note that the rates of rotation of the rod and disk need not be the same.

Let the angle between the rod and the vertical be θ \theta . Let the horizontal position of the disk's center be x 0 x_0 . The ambient gravitational acceleration is g g . The system dynamics are described by the following system of coupled differential equations:

α x 0 ¨ + 1 2 R c o s θ θ ¨ = 1 2 R s i n θ θ ˙ 2 1 2 c o s θ x 0 ¨ + 1 3 R θ ¨ = 1 2 g s i n θ \large{\alpha \, \ddot{x_0} + \frac{1}{2} \, R \, cos\theta \, \ddot{\theta} = \frac{1}{2} \, R \, sin\theta \, \dot{\theta}^2 \\ \frac{1}{2} \, cos \theta \, \ddot{x_0} + \frac{1}{3} \, R \, \ddot{\theta} = \frac{1}{2} \, g \, sin\theta}

The parameter α \alpha is a real number. What is its value?

Thanks to Azimuddin Sheikh for the inspiration

Hint: The two equations are the evaluated Euler-Lagrange equations for the two variables


The answer is 2.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Chase
Dec 23, 2018

Let's solve this using Lagrangian mechanics. This is possible because there are no losses (since the disk rolls without slipping). To solve, we will first need some expressions for the kinetic energy of the rolling disk, the kinetic energy of the rod, and the potential energy of the rod.

Start with the kinetic energy of the disk. We must account for rotation and translation:

E D = 1 2 M x 0 ˙ 2 + 1 2 I ω 2 = 1 2 M x 0 ˙ 2 + 1 2 ( 1 2 M R 2 ) ( x 0 ˙ R ) 2 = 3 4 M x 0 ˙ 2 E_D = \frac{1}{2} M \, \dot{x_0}^2 + \frac{1}{2} I \omega^2 \\ = \frac{1}{2} M \, \dot{x_0}^2 + \frac{1}{2} (\frac{1}{2} M R^2) (\frac{\dot{x_0}}{R})^2 \\ = \frac{3}{4} M \dot{x_0}^2

Next, find the kinetic energy of the rod. Begin by writing expressions for the position and velocity of an infinitesimal portion of the rod of length d α d \alpha , located a distance α \alpha from the center. Recall that θ \theta is the angle of the rod with the vertical. We are also at liberty to choose a vertical reference position for the potential energy, so take the center of the disk to be y = 0 y = 0 .

x = x 0 + α s i n θ y = α c o s θ x ˙ = x 0 ˙ + α c o s θ θ ˙ y ˙ = α s i n θ θ ˙ x = x_0 + \alpha \, sin \theta \\ y = \alpha \, cos \theta \\ \dot{x} = \dot{x_0} + \alpha \, cos \theta \, \dot{\theta} \\ \dot{y} = -\alpha \, sin \theta \, \dot{\theta}

The velocity of the infinitesimal rod portion is:

v 2 = x ˙ 2 + y ˙ 2 = x 0 ˙ 2 + 2 α c o s θ x 0 ˙ θ ˙ + α 2 θ ˙ 2 v^2 = \dot{x}^2 + \dot{y}^2 = \dot{x_0}^2 + 2 \alpha \, cos\theta \, \dot{x_0} \dot{\theta} + \alpha^2 \dot{\theta}^2

The mass of the infinitesimal rod portion is:

d m = d α R M dm = \frac{d \alpha}{R} M

The kinetic energy of the infinitesimal rod portion is:

d E R = 1 2 d m v 2 = M 2 R [ x 0 ˙ 2 + 2 α c o s θ x 0 ˙ θ ˙ + α 2 θ ˙ 2 ] d α dE_R = \frac{1}{2} \, dm \, v^2 = \frac{M}{2 R} [\dot{x_0}^2 + 2 \alpha \, cos\theta \, \dot{x_0} \dot{\theta} + \alpha^2 \dot{\theta}^2] \, d \alpha

The total rod kinetic energy is:

E R = M 2 R 0 R [ x 0 ˙ 2 + 2 α c o s θ x 0 ˙ θ ˙ + α 2 θ ˙ 2 ] d α = M 2 R [ x 0 ˙ 2 R + R 2 c o s θ x 0 ˙ θ ˙ + 1 3 R 3 θ ˙ 2 ] = 1 2 M x 0 ˙ 2 + 1 2 M R c o s θ x 0 ˙ θ ˙ + 1 6 M R 2 θ ˙ 2 E_R = \frac{M}{2 R} \int_0^R [\dot{x_0}^2 + 2 \alpha \, cos\theta \, \dot{x_0} \dot{\theta} + \alpha^2 \dot{\theta}^2] \, d\alpha \\ = \frac{M}{2 R} [\dot{x_0}^2 \, R + R^2 \, cos\theta \, \dot{x_0} \dot{\theta} + \frac{1}{3} R^3 \, \dot{\theta}^2 ] \\ = \frac{1}{2} M \dot{x_0}^2 + \frac{1}{2} M R \, cos\theta \, \dot{x_0} \dot{\theta} + \frac{1}{6} M R^2 \, \dot{\theta}^2

The total system kinetic energy is:

E = E D + E R = 5 4 M x 0 ˙ 2 + 1 2 M R c o s θ x 0 ˙ θ ˙ + 1 6 M R 2 θ ˙ 2 E = E_D + E_R = \frac{5}{4} M \dot{x_0}^2 + \frac{1}{2} M R \, cos\theta \, \dot{x_0} \dot{\theta} + \frac{1}{6} M R^2 \, \dot{\theta}^2

The gravitational potential energy of the disk is irrelevant, because it does not change (per the Euler-Lagrange equations). The gravitational potential energy of the rod is:

U = M g R 2 c o s θ U = M g \, \frac{R}{2} \, cos \theta

System Lagrangian:

L = E U = 5 4 M x 0 ˙ 2 + 1 2 M R c o s θ x 0 ˙ θ ˙ + 1 6 M R 2 θ ˙ 2 1 2 M g R c o s θ L = E - U = \frac{5}{4} M \dot{x_0}^2 + \frac{1}{2} M R \, cos\theta \, \dot{x_0} \dot{\theta} + \frac{1}{6} M R^2 \, \dot{\theta}^2 - \frac{1}{2} M g \, R \, cos \theta

The Euler-Lagrange equations describe the system dynamics. They are:

d d t L x 0 ˙ = L x 0 d d t L θ ˙ = L θ \frac{d}{dt} \frac{\partial{L}}{\partial{\dot{x_0}}} = \frac{\partial{L}}{\partial{x_0}} \\ \frac{d}{dt} \frac{\partial{L}}{\partial{\dot{\theta}}} = \frac{\partial{L}}{\partial{\theta}}

Computing this in pieces for the x 0 x_0 EL equations:

L x 0 ˙ = 5 2 M x 0 ˙ + 1 2 M R c o s θ θ ˙ d d t L x 0 ˙ = 5 2 M x 0 ¨ + 1 2 M R [ c o s θ θ ¨ s i n θ θ ˙ 2 ] L x 0 = 0 5 2 M x 0 ¨ + 1 2 M R [ c o s θ θ ¨ s i n θ θ ˙ 2 ] = 0 5 2 x 0 ¨ + 1 2 R c o s θ θ ¨ = 1 2 R s i n θ θ ˙ 2 \frac{\partial{L}}{\partial{\dot{x_0}}} = \frac{5}{2} M \dot{x_0} + \frac{1}{2} M R \, cos\theta \, \dot{\theta} \\ \frac{d}{dt} \frac{\partial{L}}{\partial{\dot{x_0}}} = \frac{5}{2} M \ddot{x_0} + \frac{1}{2} M R \,[ cos\theta \, \ddot{\theta} - sin\theta \, \dot{\theta}^2] \\ \frac{\partial{L}}{\partial{x_0}} = 0 \\ \frac{5}{2} M \ddot{x_0} + \frac{1}{2} M R \,[ cos\theta \, \ddot{\theta} - sin\theta \, \dot{\theta}^2] = 0 \\ \frac{5}{2} \ddot{x_0} + \frac{1}{2} R \ cos\theta \, \ddot{\theta} = \frac{1}{2} R sin\theta \, \dot{\theta}^2

Computing this in pieces for the θ \theta EL equations:

L θ ˙ = 1 2 M R c o s θ x 0 ˙ + 1 3 M R 2 θ ˙ d d t L θ ˙ = 1 2 M R [ c o s θ x 0 ¨ s i n θ x 0 ˙ θ ˙ ] + 1 3 M R 2 θ ¨ L θ = 1 2 M R s i n θ x 0 ˙ θ ˙ + 1 2 M g R s i n θ 1 2 M R c o s θ x 0 ¨ + 1 3 M R 2 θ ¨ = 1 2 M g R s i n θ 1 2 c o s θ x 0 ¨ + 1 3 R θ ¨ = 1 2 g s i n θ \frac{\partial{L}}{\partial{\dot{\theta}}} = \frac{1}{2} M R \, cos\theta \, \dot{x_0} + \frac{1}{3} M R^2 \, \dot{\theta}\\ \frac{d}{dt} \frac{\partial{L}}{\partial{\dot{\theta}}} = \frac{1}{2} M R \, [ cos\theta \, \ddot{x_0} - sin\theta \, \dot{x_0} \dot{\theta} ]\ + \frac{1}{3} M R^2 \, \ddot{\theta} \\ \frac{\partial{L}}{\partial{\theta}} = -\frac{1}{2} M R \, sin\theta \, \dot{x_0} \, \dot{\theta} + \frac{1}{2} M g R \, sin \theta\\ \frac{1}{2} M R cos\theta \, \ddot{x_0} + \frac{1}{3} M R^2 \, \ddot{\theta} = \frac{1}{2} M g R \, sin \theta \\ \frac{1}{2} cos\theta \, \ddot{x_0} + \frac{1}{3} R \, \ddot{\theta} = \frac{1}{2} g \, sin \theta

Summarizing the results:

5 2 x 0 ¨ + 1 2 R c o s θ θ ¨ = 1 2 R s i n θ θ ˙ 2 1 2 c o s θ x 0 ¨ + 1 3 R θ ¨ = 1 2 g s i n θ \frac{5}{2} \ddot{x_0} + \frac{1}{2} R \ cos\theta \, \ddot{\theta} = \frac{1}{2} R sin\theta \, \dot{\theta}^2 \\ \frac{1}{2} cos\theta \, \ddot{x_0} + \frac{1}{3} R \, \ddot{\theta} = \frac{1}{2} g \, sin \theta

Awesome sir !!!!

Kudo Shinichi - 2 years, 5 months ago

What about constraints

Karthik Sai - 1 year, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...