Roman digit count

What is the expected number of "digits" ( I V X L C D M \mathrm{I\ V\ X\ L\ C\ D\ M} ) if an integer between 1 and 999 is written as a Roman numeral? Round off to one decimal.

Note

  • 4 = I V \mathrm{IV} , not I I I I \mathrm{IIII} , etc.

  • 49 = X L I X \mathrm{XLIX} , not I L \mathrm{IL} ; 890 = D C C C X C \mathrm{DCCCXC} , not X C M \mathrm{XCM} , etc.


The answer is 6.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Arjen Vreugdenhil
Dec 19, 2017

Consider the Roman numerals for 0 through 9: n 0 1 2 3 4 5 6 7 8 9 Roman I I I I I I I V V V I V I I V I I I I X digits 0 1 2 3 2 1 2 3 4 2 \begin{array}{r|cccccccccc} n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline \text{Roman} & & \mathrm{I} & \mathrm{II} & \mathrm{III} & \mathrm{IV} & \mathrm{V} & \mathrm{VI} & \mathrm{VII} & \mathrm{VIII} & \mathrm{IX} \\ \text{digits} & 0 & 1 & 2 & 3 & 2 & 1 & 2 & 3 & 4 & 2 \end{array}

The average is 2 "digits" to represent each unit (number 0-9). In the same way, 2 "digits" are needed to represent tens (0-90), and 2 "digits" to represent hundreds (0 - 900).

Adding these together, we see that the average number of digits for a Roman numeral between 0 and 999 is precisely 2 + 2 + 2 = 6 2 + 2 + 2 = 6 .

Excluding 0, the average becomes slightly higher, namely 6 × 1000 999 6.006 6.0 . 6 \times \frac{1000}{999} \approx 6.006 \approx \boxed{6.0}.

Giorgos K.
Jan 2, 2018

Mathematica

N@Mean@Array[StringLength@RomanNumeral@#&, 999]

6.00601

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...