A problem by Romeo Gomez

Level 2

The sum n = 1 n 201 5 n , \sum_{n=1}^{\infty}\frac{n}{2015^n}, can be represented as a b \frac{a}{b} where a , b a,b are positive coprime integers, find the value of R o m e o = a + b Romeo=a+b


The answer is 4058211.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Romeo Gomez
Apr 3, 2015

I will do it for general cases. For k N { 1 } k\in\mathbb{N}-\{1\} , let define the sum as x = n = 1 n k n = 1 k + 2 k 2 + 3 k 3 + , x=\sum_{n=1}^{\infty}{\frac{n}{k^n}=\frac{1}{k}+\frac{2}{k^2}+\frac{3}{k^3}+\dots}, divide x x by k k x k = n = 1 n k n + 1 = 1 k 2 + 2 k 3 + 3 k 4 + , \frac{x}{k}=\sum_{n=1}^{\infty}{\frac{n}{k^{n+1}}}=\frac{1}{k^2}+\frac{2}{k^3}+\frac{3}{k^4}+\dots, then subtract it to the original sum x x k = 1 k + ( 2 k 2 1 k 2 ) + ( 3 k 3 2 k 3 ) + x-\frac{x}{k}=\frac{1}{k}+(\frac{2}{k^2}-\frac{1}{k^2})+(\frac{3}{k^3}-\frac{2}{k^3})+\dots x ( k 1 k ) = 1 k + 1 k 2 + 1 k 3 + x(\frac{k-1}{k})=\frac{1}{k}+\frac{1}{k^2}+\frac{1}{k^3}+\dots x ( k 1 k ) = n = 1 1 k n x(\frac{k-1}{k})=\sum_{n=1}^{\infty}{\frac{1}{k^n}} x ( k 1 k ) = n = 1 1 k n + 1 1 x(\frac{k-1}{k})=\sum_{n=1}^{\infty}{\frac{1}{k^n}}+1-1 x ( k 1 k ) = n = 0 1 k n 1 , x(\frac{k-1}{k})=\sum_{n=0}^{\infty}{\frac{1}{k^n}}-1, we get a Geometric serie x ( k 1 k ) = 1 1 1 k 1 x(\frac{k-1}{k})=\frac{1}{1-\frac{1}{k}}-1 x ( k 1 k ) = 1 k 1 k 1 x(\frac{k-1}{k})=\frac{1}{\frac{k-1}{k}}-1 x ( k 1 k ) = k k 1 1 x(\frac{k-1}{k})=\frac{k}{k-1}-1 x ( k 1 k ) = 1 k 1 x(\frac{k-1}{k})=\frac{1}{k-1} x = k ( k 1 ) 2 , x=\frac{k}{(k-1)^2}, so n = 1 n k n = k ( k 1 ) 2 , \sum_{n=1}^{\infty}{\frac{n}{k^n}}=\frac{k}{(k-1)^2}, let k = 2015 k=2015 n = 1 n 201 5 n = 2015 201 4 2 \sum_{n=1}^{\infty}{\frac{n}{2015^n}}=\frac{2015}{2014^2} so R o m e o = 4058211 , Romeo=\boxed{4058211}, yey we find him !!!!!!! yujuuuu!!!! :D

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...