Root Algebra

Algebra Level 2

If a + b + c + 2 a c + 2 b c × a + b + c 2 a c + 2 b c \sqrt{a + b +c + \sqrt{2ac +2bc}}\times \sqrt{a+b+c- \sqrt{2ac+2bc}} = 24 = 24 ,

and a × b = 6 a\times b = 6 ,

Then find the value of a 2 + b 2 + c 2 a^2 +b^2 +c^2 .


The answer is 564.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ram Mohith
Jul 19, 2018

a + b + c + 2 a c + 2 b c × a + b + c 2 a c + 2 b c = 24 \sqrt{ {\color{#3D99F6}a + b +c} + \sqrt{\color{#E81990}2ac +2bc} }\times \sqrt{ {\color{#3D99F6}a+b+c} - \sqrt{{\color{#E81990}2ac+2bc}}} = 24

( a + b + c ) 2 ( 2 a c + 2 b c ) 2 = 24 ( Since it is in the form : ( a + b ) ( a b ) = a 2 b 2 ) \implies \sqrt{ ({\color{#3D99F6}a + b + c})^2 - (\sqrt{ {\color{#E81990}2ac + 2bc} })^2} = 24 \quad \quad (\text{Since it is in the form :} (a + b)(a - b) = a^2 - b^2)

a 2 + b 2 + c 2 + 2 a b + 2 b c + 2 a c 2 a c 2 b c = 24 \implies \sqrt{a^2 + b^2 + c^2 + 2ab + \cancel{2bc} + \cancel{2ac} - \cancel{2ac} - \cancel{2bc}} = 24

a 2 + b 2 + c 2 + 2 ( a b ) = 576 \implies a^2 + b^2 + c^2 + 2(ab) = 576

a 2 + b 2 + c 2 + 2 ( 6 ) = 576 \implies a^2 + b^2 + c^2 + 2(6) = 576

a 2 + b 2 + c 2 = 576 12 = 564 \implies a^2 + b^2 + c^2 = 576 - 12 = 564

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...