Root in Root Integral

Calculus Level 3

Behold the indefinite integral: ( x 3 2 x 3 4 x 3 14 x 3 16 . . . x 3 8 x 3 10 x 3 20 x 3 22 . . . ) d x \int_{ }^{ }\left(\frac{\sqrt[2]{x^{\sqrt{3}}}\sqrt[4]{x^{\sqrt{3}}}\sqrt[14]{x^{\sqrt{3}}}\sqrt[16]{x^{\sqrt{3}}}...}{\sqrt[8]{x^{\sqrt{3}}}\sqrt[10]{x^{\sqrt{3}}}\sqrt[20]{x^{\sqrt{3}}}\sqrt[22]{x^{\sqrt{3}}}...}\right)dx Hint: The Integrand can be algebraically manipulated to show a x taken to the exponent of a infinite series: x n = 1 sin ( n θ ) n d x \int_{ }^{ }x^{\sum_{n=1}^{\infty}\frac{\sin\left(n\theta\right)}{n}}dx

Answer Submission: The integral can be expressed as x ( α π + 1 ) α π + 1 + C \frac{x^{\left(\alpha\pi+1\right)}}{\alpha\pi+1}+C , the answer is α 2 \alpha^{-2} .

Note: If there is anything wrong with the problem, feel free to notify me. :)


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
May 2, 2020

The integrand's numerator and denominator can be respectively written as:

( x 3 ) ( 1 2 + 1 4 + 1 14 + 1 16 + + 1 12 n 10 + 1 12 n 8 + . . . ) (x^{\sqrt{3}})(\frac{1}{2}+\frac{1}{4} +\frac{1}{14}+\frac{1}{16}+ … + \frac{1}{12n-10} + \frac{1}{12n-8} + ... ) (i)

( x 3 ) ( 1 8 + 1 10 + 1 20 + 1 22 + + 1 12 n 4 + 1 12 n 2 + . . . ) (x^{\sqrt{3}})(\frac{1}{8}+\frac{1}{10} +\frac{1}{20}+\frac{1}{22}+ … + \frac{1}{12n-4} + \frac{1}{12n-2} + ... ) (ii)

Thus the integrand becomes:

x 3 N x^{\sqrt{3} \cdot N} , where N = Σ k = 1 1 12 k 10 + 1 12 k 8 1 12 n 4 1 12 n 2 = π 3 3 . N = \Sigma_{k=1}^{\infty} \frac{1}{12k-10} + \frac{1}{12k-8} - \frac{1}{12n-4} - \frac{1}{12n-2} = \frac{\pi}{3\sqrt{3}}.

or x π / 3 d x = x π / 3 + 1 π / 3 + 1 + C \int x^{\pi / 3} dx = \boxed{\frac{x^{\pi/3 + 1}}{\pi/3 + 1} + C}

which yields α = 1 3 α 2 = 9 . \alpha = \frac{1}{3} \Rightarrow \alpha^{-2} = \boxed{9}.

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...