Root of the problem

Algebra Level 4

5 21 32 2 ( 5 21 ) 21 \large \frac{\sqrt{5-\sqrt{21}}}{\sqrt{32-2(5-\sqrt{21})} - \sqrt{21}}

If the value of the radical expression above equals to a b c d \sqrt{\dfrac{a}{b}} - \sqrt{\dfrac{c}{d}} , where a , b , c a,b,c and d d are positive integers with gcd ( a , b ) = \gcd(a,b) = gcd ( c , d ) = 1 \gcd(c,d) = 1 . Find a + b + c + d a+b+c+d .


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ravneet Singh
Aug 28, 2016

Denominator becomes

32 2 ( 5 21 ) 21 \sqrt{32-2(5-\sqrt{21})} - \sqrt{21}

= 22 + 2 21 21 =\sqrt{22+2\sqrt{21}} - \sqrt{21}

= ( 1 + 21 ) 2 21 =\sqrt{(1+\sqrt{21})^2} - \sqrt{21}

= 1 + 21 21 =1+\sqrt{21} - \sqrt{21}

= 1 =1

Numerator becomes

5 21 \sqrt{5-\sqrt{21}}

= 10 2 21 2 =\sqrt{\dfrac{10-2\sqrt{21}}{2}}

= ( 7 3 ) 2 2 =\sqrt{\dfrac{(\sqrt{7}-\sqrt{3})^2}{2}}

= ( 7 3 ) 2 =\dfrac{(\sqrt{7}-\sqrt{3})}{\sqrt{2}}

= 7 2 3 2 =\sqrt{\dfrac{7}{2}} - \sqrt{\dfrac{3}{2}}

Thus a + b + c + d = 7 + 2 + 3 + 2 = 14 a+b+c+d=7+2+3+2=\boxed{14}

Chew-Seong Cheong
Aug 29, 2016

An educated guess to approach problem with radicals is checking if radicals can be simplified as A + B = \sqrt{A+\sqrt{B}} = ( α + β ) 2 = \sqrt{(\alpha+\sqrt{\beta})^2} = α + β \alpha+\sqrt{\beta} . I first checked on 5 21 \sqrt{5-\sqrt{21}} . It did not work. So let us check on 32 2 ( 5 21 ) \sqrt{32-2(5-\sqrt{21})} .

32 2 ( 5 21 ) = ( α + β ) 2 22 + 2 21 = α 2 + β + 2 α β \begin{aligned} \sqrt{32-2(5-\sqrt{21})} & = \sqrt{(\alpha+\sqrt{\beta})^2} \\ \sqrt{22+2\sqrt{21}} & = \sqrt{\alpha^2 + \beta + 2\alpha \sqrt{\beta}} \end{aligned}

Equating the rational and irrational parts: { α 2 + β = 22 2 α β = 2 21 \begin{cases} \alpha^2 + \beta = 22 \\ 2\alpha \sqrt{\beta} = 2\sqrt{21} \end{cases}

It is reasonable to assume that β = 21 \sqrt{\beta} = \sqrt{21} or β = 21 \beta = 21 , then α = 1 \alpha = 1 which satisfies the equations. 32 2 ( 5 21 ) = 1 + 21 \implies \sqrt{32-2(5-\sqrt{21})} = 1 + \sqrt{21} . Therefore, we have:

X = 5 21 32 2 ( 5 21 ) 21 = 5 21 1 + 21 21 = 5 21 \begin{aligned} X = \frac {\sqrt{5-\sqrt{21}}}{\sqrt{32-2(5-\sqrt{21})} - \sqrt{21}} & = \frac {\sqrt{5-\sqrt{21}}}{1+\sqrt{21} - \sqrt{21}} = \sqrt{5-\sqrt{21}} \end{aligned}

Now, let X = x y X = \sqrt x - \sqrt y .

x y = 5 21 Squaring both sides, x + y 2 x y = 5 21 \begin{aligned} \implies \sqrt{x} - \sqrt{y} & = \sqrt{5-\sqrt{21}} & \small \color{#3D99F6}{\text{Squaring both sides,}} \\ x + y - 2\sqrt{xy} & = 5 - \sqrt{21} \end{aligned}

{ x + y = 5 . . . ( 1 ) 4 x y = 21 . . . ( 2 ) \implies \begin{cases} x+y = 5 & ...(1) \\ 4xy = 21 & ...(2) \end{cases}

( 2 ) : y = 21 4 x ( 1 ) : x + 21 4 x = 5 4 x 2 20 x + 21 = 0 ( 2 x 3 ) ( 2 x 7 ) = 0 x = 7 2 y = 3 2 \begin{aligned} (2): \quad y & = \frac {21}{4x} \\ (1): \quad x + \frac {21}{4x} & = 5 \\ 4x^2 - 20x + 21 & = 0 \\ (2x-3)(2x-7) & = 0 \\ \implies x & = \frac 72 \\ y & = \frac 32 \end{aligned}

X = 7 2 3 2 a + b + c + d = 7 + 2 + 3 + 2 = 14 \implies X = \sqrt{\dfrac 72} - \sqrt{\dfrac 32} \implies a + b+c+d = 7+2+3+2 = \boxed{14}

We can start with the numerator also. If we multiply 2 \sqrt {2} to it, then it becomes a perfect square and reduces directly to 7 3 \sqrt {7}-\sqrt {3} .

Aniruddha Bagchi - 4 years, 5 months ago

Log in to reply

Anyway sorry for the poor LaTeX typing. New to this.

Aniruddha Bagchi - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...