Root series

Algebra Level 3

Determine the value of

3 2 4 + 1 2 2 2 4 2 1 + 5 2 4 + 2 2 3 2 6 2 1 + 7 2 4 + 3 2 4 2 8 2 1 + + 7 9 2 4 + 3 9 2 4 0 2 8 0 2 1 \small \frac {\sqrt {3^2-4}+1^2-2^2} {\sqrt {4^2-1}}+\frac {\sqrt {5^2-4}+2^2-3^2} {\sqrt {6^2-1}}+\frac {\sqrt {7^2-4}+3^2-4^2} {\sqrt {8^2-1}}+\cdots+\frac {\sqrt {79^2-4}+39^2-40^2} {\sqrt {80^2-1}}\\

3 3 79 3 \frac {3\sqrt 3-\sqrt {79}} 3 3 3 + 79 3 \frac {3\sqrt 3+\sqrt {79}} 3 3 3 + 79 9 \frac {3\sqrt 3+\sqrt {79}} 9 3 3 79 9 \frac {3\sqrt 3-\sqrt {79}} 9

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Feb 13, 2021

The given sum can be written as:

S = n = 1 39 ( 2 n + 1 ) 2 4 + n 2 ( n + 1 ) 2 ( 2 ( n + 1 ) ) 2 1 Note that a 2 b 2 = ( a + b ) ( a b ) = n = 1 39 ( 2 n + 1 + 2 ) ( 2 n + 1 2 ) ( 2 n + 1 ) ( 2 n + 2 + 1 ) ( 2 n + 2 1 ) = n = 1 39 ( 2 n + 3 ) ( 2 n 1 ) ( 2 n + 1 ) ( 2 n + 3 ) ( 2 n + 1 ) = n = 1 39 ( 2 n 1 2 n + 1 2 n + 1 2 n + 3 ) = 1 3 3 5 + 3 5 5 7 + 5 7 7 9 + + 77 79 79 81 = 1 3 79 81 = 3 3 79 9 \begin{aligned} S & = \sum_{n=1}^{39} \frac {\sqrt{(2n+1)^2-4}+n^2-(n+1)^2}{\sqrt{(2(n+1))^2 - 1}} & \small \blue{\text{Note that }a^2 - b^2 = (a+b)(a-b)} \\ & = \sum_{n=1}^{39} \frac {\sqrt{(2n+1+2)(2n+1-2)}-(2n+1)}{\sqrt{(2n+2+1)(2n+2-1)}} \\ & = \sum_{n=1}^{39} \frac {\sqrt{(2n+3)(2n-1)}-(2n+1)}{\sqrt{(2n+3)(2n+1)}} \\ & = \sum_{n=1}^{39} \left(\sqrt{\frac {2n-1}{2n+1}} - \sqrt{\frac {2n+1}{2n+3}} \right) \\ & = \sqrt{\frac 13} - \cancel{\sqrt{\frac 35}} + \cancel{\sqrt{\frac 35}} - \cancel{\sqrt{\frac 57}} + \cancel{ \sqrt{\frac 57}} - \cancel{\sqrt{\frac 79}} + \cdots + \cancel{\sqrt{\frac {77}{79}}} - \sqrt{\frac {79}{81}} \\ & = \sqrt{\frac 13} - \sqrt{\frac {79}{81}} \\ & = \boxed{\frac {3\sqrt3 - \sqrt{79}}9} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...