Root under Root

Algebra Level 4

x + 10 6 x + 1 + x + 2 2 x + 1 = 2 \sqrt{x+10 - 6 \sqrt{x+1}} + \sqrt{x+2 - 2 \sqrt{x+1}} = 2

Find the sum of all the whole numbers of x x such that the above equation is satisfied.


The answer is 36.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Abhishek Sharma
Feb 21, 2015

Observe that

x + 10 6 x + 1 = x + 1 2 + 3 2 2 ( x + 1 ) 3 = x + 1 3 \sqrt { x+10-6\sqrt { x+1 } } =\sqrt { { \sqrt { x+1 } }^{ 2 }+{ 3 }^{ 2 }-2(\sqrt { x+1 } )3 } =\left| \sqrt { x+1 } -3 \right| .

Similarly

x + 2 x + 1 = x + 1 2 + 1 2 2 ( x + 1 ) 1 = x + 1 1 \sqrt { x+2-\sqrt { x+1 } } =\sqrt { { \sqrt { x+1 } }^{ 2 }+{ 1 }^{ 2 }-2(\sqrt { x+1 } )1 } =\left| \sqrt { x+1 } -1 \right| .

x + 1 3 \left| \sqrt { x+1 } -3 \right| changes its definition at x = 8 x=8 .

Similarly x + 1 1 \left| \sqrt { x+1 } -1 \right| changes its definition at x = 0 x=0 .

Now make intervals about x = 0 x=0 and x = 8 x=8 and solve to get x = 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 x=0,1,2,3,4,5,6,7,8 .

Mustafa Embaby
Feb 21, 2015

By rearrangement:

( x + 1 ) 6 x + 1 + 9 + ( x + 1 ) 2 x + 1 + 1 = 2 \sqrt{(x+1) - 6\sqrt{x+1} +9} + \sqrt{(x+1) - 2\sqrt{x+1} +1}=2

( x + 1 3 ) 2 + ( x + 1 1 ) 2 = 2 \sqrt{(\sqrt{x+1}-3)^2} + \sqrt{(\sqrt{x+1}-1)^2}=2

x + 1 3 + x + 1 1 = 2 \Rightarrow |\sqrt{x+1}-3| + |\sqrt{x+1}-1|=2

Since x x \in Whole Numbers x + 1 1 x + 1 1 0 x + 1 1 = x + 1 1 \Rightarrow \sqrt{x+1} \geq 1\Rightarrow \sqrt{x+1}-1 \geq 0 \Rightarrow |\sqrt{x+1}-1| = \sqrt{x+1}-1

x + 1 3 + x + 1 1 = 2 x + 1 3 = 3 x + 1 \Rightarrow |\sqrt{x+1}-3| + \sqrt{x+1}-1=2 \Rightarrow |\sqrt{x+1}-3|=3 - \sqrt{x+1}

x + 1 3 x + 1 9 x 8 \therefore \sqrt{x+1} \leq 3 \Rightarrow x+1 \leq 9 \Rightarrow x \leq 8

x = \therefore x = {0, 1, 2, 3, 4, 5, 6, 7, 8} S x = 8 9 2 = 36 \Rightarrow S_x = \dfrac {8*9}{2} = \boxed{36}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...