Rooted logs

Algebra Level 2

log 10 ( 15 14 ) < log 0.1 ( 16 15 ) \large \color{#20A900}{\log_{10}(\sqrt{15}-\sqrt{14})} \color{#D61F06}{<} \color{#3D99F6}{\log_{0.1}(\sqrt{16}-\sqrt{15})}

State the above inequality as True/False.


Join the Brilliant Classes and enjoy the excellence.
True False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Abhishek Sharma
May 9, 2015

We need to state whether l o g 10 ( 15 14 ) < l o g 0.1 ( 16 15 ) {log_{10}(\sqrt{15}-\sqrt{14})} {<} {log_{0.1}(\sqrt{16}-\sqrt{15})} is true.

Using property of logarithms,

l o g 10 ( 15 14 ) < l o g 10 ( 1 16 15 ) ) {log_{10}(\sqrt{15}-\sqrt{14})} {<} {log_{10}(\frac{1}{\sqrt{16}-\sqrt{15})})}

Rationalising,

l o g 10 ( 15 14 ) < l o g 10 ( 16 + 15 ) {log_{10}(\sqrt{15}-\sqrt{14})} {<} {log_{10}(\sqrt{16}+\sqrt{15})}

This statement is obviously true as log 10 x \log _{ 10 }{ x } is a monotonically increasing function.

Moderator note:

Yes, good use simply identifying the "conjugates" and change of base in logarithms. Well done.

{ 15 14 < 1 log 10 15 14 < 0 16 15 < 1 log 10 16 15 < 0 \begin{cases} \sqrt{15}-\sqrt{14} < 1 & \log_{\color{#D61F06}{10}}{\sqrt{15}-\sqrt{14}} < 0 \\ \sqrt{16}-\sqrt{15} < 1 & \log_{\color{#D61F06}{10}}{\sqrt{16}-\sqrt{15}} < 0 \end{cases}

But log 0.1 16 15 = log 10 16 15 log 10 0.1 = log 10 16 15 1 > 0 \log_{\color{#3D99F6}{0.1}}{\sqrt{16}-\sqrt{15}} = \dfrac {\log_{\color{#D61F06}{10}}{\sqrt{16}-\sqrt{15}}}{\log_{\color{#D61F06}{10}}{\color{#3D99F6}{0.1}}} = \dfrac {\log_{\color{#D61F06}{10}}{\sqrt{16}-\sqrt{15}}}{\color{#3D99F6}{-1 }} \color{#3D99F6}{> 0}

log 10 15 14 < log 0.1 16 15 \Rightarrow \log_{\color{#D61F06}{10}}{\sqrt{15}-\sqrt{14}} < \log_{\color{#3D99F6}{0.1}}{\sqrt{16}-\sqrt{15}} \space is T r u e \space \boxed{\color{#3D99F6}{True}}

Deepak Kumar
May 9, 2015

Using graph of logarithmic function for base <1 & base>1 we can see that argument of logarithm in both cases lies in (0,1) and on LHS base >1 => LHS <0 i.e negative while on RHS ,base <1 => RHS >0 i.e positive.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...