Nested Roots

Algebra Level 1

F i n d t h e v a l u e o f 6 + 6 + 6 + 6 + . . . . . . . . Find\quad the\quad value\quad of\quad \\ \sqrt { 6+\sqrt { 6+\sqrt { 6+\sqrt { 6+........ } } } }


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rajdeep Dhingra
Oct 16, 2014

L e t 6 + 6 + 6 + . . . . . . b e = x s o 6 + x = x S q u a r i n g b o t h s i d e s 6 + x = x 2 x 2 x 6 = 0 s o l v i n g x = 1 ± 1 2 4 ( 6 ) 2 x = 3 o r 2 R o o t s c a n t b e n e g a t i v e H e n c e x = 3 Let\quad \sqrt { 6+\sqrt { 6+\sqrt { 6+...... } } } be\quad =\quad x\\ so\\ \sqrt { 6\quad +\quad x } \quad =\quad x\\ Squaring\quad both\quad sides\\ 6\quad +\quad x\quad =\quad { x }^{ 2 }\\ { x }^{ 2 }\quad -\quad x\quad -\quad 6\quad =\quad 0\\ solving\\ x\quad =\quad \frac { 1\quad \pm \quad \sqrt { { 1 }^{ 2 }-4(-6) } }{ 2 } \\ x\quad =\quad 3\quad or\quad -2\\ Roots\quad can't\quad be\quad negative\quad \\ Hence\quad x\quad =\quad 3\\ root root

how x can be equal to root over 6+x??????

Ariful Ashiq - 5 years, 9 months ago

Log in to reply

Since ,X=√6+√6..... We see that in,√6+X=X ------1 Pit the value of X in equation 1. ✔️6+√6...=✔️6+√6

SayHi2God Rohit - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...