But they are nested

Algebra Level 2

2 + 2 2 1 + 2 2 2 1 = ? \large \sqrt{\sqrt2 + 2\sqrt{\sqrt2 -1}} + \sqrt{\sqrt2 - 2\sqrt{\sqrt2 -1}} = \ ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Yang Cheng
Jun 21, 2015

Let

a = 2 + 2 2 1 a= \sqrt{ \sqrt2 + 2\sqrt{\sqrt2 -1}}

b = 2 2 2 1 b= \sqrt {\sqrt2 - 2\sqrt{\sqrt2-1}}

We can see that a 2 + b 2 = 2 2 . . . . . . ( 1 ) a^2+b^2= 2 \sqrt2 \qquad...... (1)

a b = 2 + 2 2 1 × 2 2 2 1 = 2 4 ( 2 1 ) = 6 4 2 = 2 2 2 × 2 × 2 + ( 2 ) 2 = ( 2 2 ) 2 a b = 2 2 . . . . . . ( 2 ) \begin{aligned} ab &= \sqrt{ \sqrt2 + 2\sqrt{\sqrt2 -1}} \times \sqrt {\sqrt2 - 2\sqrt{\sqrt2-1}} \\ &= \sqrt{2-4 \left ( \sqrt2 -1 \right ) } \\ &= \sqrt{ 6- 4 \sqrt2 } \\ &= \sqrt{ 2^2-2 \times 2 \times \sqrt2 + \left ( \sqrt2 \right )^2 } \\ &= \sqrt{ \left ( 2- \sqrt2 \right )^2 } \\ ab &=2- \sqrt2 \qquad...... (2) \end{aligned}

Substitute ( 1 ) (1) and ( 2 ) (2) into the identity ( a + b ) 2 = a 2 + 2 a b + b 2 (a+b)^2=a^2+2ab+b^2 , we get ( a + b ) 2 = 4 (a+b)^2=4

Since a + b a+b is positive, a + b = 2 \large { \boxed{ a+b=2}}

Letting the given expression be x , x, we have that

x 2 = ( 2 + 2 2 1 ) + ( 2 2 2 1 ) + 2 2 4 2 1 = x^{2} = (\sqrt{2} + 2\sqrt{\sqrt{2} - 1}) + (\sqrt{2} - 2\sqrt{\sqrt{2} - 1}) + 2\sqrt{2 - 4\sqrt{\sqrt{2} - 1}} =

2 2 + 2 6 4 2 = 2 2 + 2 ( 2 2 ) 2 = 2 2 + 2 ( 2 2 ) = 4. 2\sqrt{2} + 2\sqrt{6 - 4\sqrt{2}} = 2\sqrt{2} + 2\sqrt{(2 - \sqrt{2})^{2}} = 2\sqrt{2} + 2(2 - \sqrt{2}) = 4.

Since x x is clearly positive, we then conclude that x = 4 = 2 . x = \sqrt{4} = \boxed{2}.

2 + 2 2 1 + 2 2 2 1 = ( 2 + 2 2 1 + 2 2 2 1 ) 2 = 2 + 2 2 1 + 2 2 2 1 + 2 ( 2 + 2 2 1 ) ( 2 2 2 1 ) = 2 2 + 2 2 4 ( 2 1 ) = 2 2 + 2 6 4 2 = 2 2 + 2 ( 2 2 ) = 2 2 + 4 2 2 = 4 = 2 \quad\sqrt { \sqrt { 2 } +2\sqrt { \sqrt { 2 } -1 } } +\sqrt { \sqrt { 2 } -2\sqrt { \sqrt { 2 } -1 } } \\ =\sqrt { { \left( \sqrt { \sqrt { 2 } +2\sqrt { \sqrt { 2 } -1 } } +\sqrt { \sqrt { 2 } -2\sqrt { \sqrt { 2 } -1 } } \right) }^{ 2 } } \\ =\sqrt { \sqrt { 2 } +2\sqrt { \sqrt { 2 } -1 } +\sqrt { 2 } -2\sqrt { \sqrt { 2 } -1 } +2\left( \sqrt { \sqrt { 2 } +2\sqrt { \sqrt { 2 } -1 } } \right) \left( \sqrt { \sqrt { 2 } -2\sqrt { \sqrt { 2 } -1 } } \right) } \\ =\sqrt { 2\sqrt { 2 } +2\sqrt { 2-4\left( \sqrt { 2 } -1 \right) } } \\ =\sqrt { 2\sqrt { 2 } +2\sqrt { 6-4\sqrt { 2 } } } \\ =\sqrt { 2\sqrt { 2 } +2\left( 2-\sqrt { 2 } \right) } \\ =\sqrt { 2\sqrt { 2 } +4-2\sqrt { 2 } } \\ =\sqrt { 4 } \\ =\boxed { 2 }

Nikhil Rajawat
Jun 21, 2015

For answer to be 2 there should be a '-' b/w the two radicals...otherwise the answer would be 2*sqrt(sqrt(2)-1).

Ramiel To-ong
Jun 14, 2015

simplifying will result to 2

Moderator note:

Can you elaborate on it? It's not obvious that the simplification leads to 2.

Elaborate?

Thomas Lai - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...