Roots!

Algebra Level 3

If ( 4 + 15 ) 3 / 2 ( 4 15 ) 3 / 2 = K 6 (4 + \sqrt{15})^{3/2} - (4 - \sqrt{15})^{3/2} = K\sqrt{6}

where K K is a positive integer. Find K . K.


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sagar Maity
May 5, 2014

Given that,

( 4 + 15 ) 3 2 ( 4 15 ) 3 2 = K 6 (4+\sqrt{15})^\frac{3}{2}-(4-\sqrt{15})^\frac{3}{2}=K\sqrt{6}

After squaring both sides and we get,

( 4 + 15 ) 3 + ( 4 15 ) 3 2 ( ( 4 + 15 ) ( 4 15 ) ) 3 2 = 6 × ( K 2 ) (4+\sqrt{15})^3+(4-\sqrt{15})^3-2((4+\sqrt{15})(4-\sqrt{15}))^\frac{3}{2}=6\times(K^2)

now,we know

( a + b ) ( a b ) = a 2 b 2 \boxed{(a+b)(a-b)=a^2-b^2}

( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 \boxed{(a+b)^3=a^3+3a^2b+3ab^2+b^3}

( a b ) 3 = a 3 3 a 2 b + 3 a b 2 b 3 \boxed{(a-b)^3=a^3-3a^2b+3ab^2-b^3}

( a + b ) 3 + ( a b ) 3 = 2 a 3 + 6 a b 2 \boxed{(a+b)^3+(a-b)^3=2a^3+6ab^2}

then,applying these formulas in the equation we get,

( 2 × 4 3 ) + ( 6 × 4 × ( 15 ) 2 ) ( 2 × ( 4 2 ( 15 ) 2 ) 3 2 ) = 6 × ( K 2 ) (2\times4^3)+(6\times4\times(\sqrt{15})^2)-(2\times(4^2-(\sqrt{15})^2)^\frac{3}{2})=6\times(K^2)

( 2 × 64 ) + ( 6 × 4 × 15 ) ( 2 × 1 3 2 ) = 6 × ( K 2 ) (2\times64)+(6\times4\times15)-(2\times1^\frac{3}{2})=6\times(K^2)

128 + 360 2 = 6 × ( K 2 ) 128+360-2=6\times(K^2)

6 × ( K 2 ) = 486 6\times(K^2)=486

K 2 = 486 / 6 K^2=486/6

K 2 = 81 K^2=81

K = 81 K=\sqrt{81}

K = 9 K=\boxed{9}

so, 9 is the answer

Nice but a lengthy solution.

Saurabh Mallik - 7 years, 1 month ago
Suraj Sharma
Oct 11, 2015

Let, (4+√15)^(1/2) be a, Then,(4-√15)^(1/2) will be 1/a = b (say) {Just multiply numerator and denominator by 4+√15} So, a b = 1. Now the given problem becomes : a^3 - b^3 Use the identity : a^3 - b^3 = (a-b) (a^2+b^2+a b) Then, a^2+b^2+a b becomes 4+√15+4-√15+1 = 9. And a-b becomes (4+√15)^1/2 - (4-√15)^1/2 Square it and then take square root of this expression Which basically means : (a^2)^1/2 = a(This is done to easily solve it) i.e. (a-b)^2 = 4+√15+4-√15-2 = 6. Now take square root i.e.
√(a-b)^2 = √6 Thus, it becomes 9 √6 Comparing with K √6, we get K=9.

Same concept with Sagar Maity . Maybe better presented.

Let a = 4 + 15 a = 4+\sqrt{15} and b = 4 15 b = 4-\sqrt{15} .

Then we note that a + b = 8 a+b=8 and a b = 4 2 ( 15 ) 2 = 16 15 = 1 ab= 4^2-(\sqrt{15})^2=16-15=1 .

Then, L H S = a 3 2 b 3 2 \space LHS=a^{\frac{3}{2}} - b^{\frac{3}{2}}

L H S 2 = a 3 2 ( a b ) 3 2 + b 3 = a 3 + b 3 2 ( 1 ) \Rightarrow LHS^2 = a^3-2(ab)^{\frac{3}{2}} + b^3 = a^3 + b^3 - 2(1)

= ( a + b ) ( a 2 a b + b 2 ) 2 = 8 ( a 2 + 2 a b + b 2 3 a b ) 2 \quad \quad \quad \quad = (a+b)(a^2-ab+b^2)-2 = 8(a^2+2ab+b^2-3ab)-2

= 8 [ ( a + b ) 2 3 ] 2 = 8 ( 64 3 ) 2 = 486 \quad \quad \quad \quad = 8[(a+b)^2-3]-2 = 8(64-3)-2 = 486

( K 6 ) 2 = 6 K 2 = 486 K 2 = 81 K = 9 \Rightarrow (K\sqrt{6})^2 = 6K^2 = 486\quad \Rightarrow K^2=81\quad \Rightarrow K = \boxed{9}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...