Roots and its relations

Algebra Level 4

Let x 1 , x 2 , . . . , x 10 x_1, x_2, . . ., x_{10} be the roots of the polynomial x 10 + x 9 + + x + 1 x^{10}+x^9+\cdots +x+1 . Find the value of n = 1 10 1 1 x n \large{\sum_{n=1}^{10} \frac{1}{1-x_n}}


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Joseph Newton
Jan 7, 2019

Let y n = 1 1 x n y_n=\frac1{1-x_n} , so x n = 1 1 y n x_n=1-\frac1{y_n} . Therefore, since all of x 1 , x 2 , , x 10 x_1,x_2,\dots,x_{10} satisfy the equation 1 + x + x 2 + x 10 = 0 1+x+x^2\dots+x^{10}=0 , all of y 1 , y 2 , , y 10 y_1,y_2,\dots,y_{10} must satisfy the following equation:

1 + ( 1 1 y ) + ( 1 1 y ) 2 + ( 1 1 y ) 3 + + ( 1 1 y ) 10 = 0 1+\left(1-\frac1y\right)+\left(1-\frac1y\right)^2+\left(1-\frac1y\right)^3+\dots+\left(1-\frac1y\right)^{10}=0

1 + 1 1 y + 1 ( 2 1 ) 1 y + ( 2 2 ) 1 y 2 + 1 ( 3 1 ) 1 y + ( 3 2 ) 1 y 2 ( 3 3 ) 1 y 3 = 0 + 1 ( 10 1 ) 1 y + ( 10 2 ) 1 y 2 ( 10 3 ) 1 y 3 + + ( 10 10 ) 1 y 10 \begin{aligned}\therefore\quad&1 \\+\,&1-\frac1y\\ +\,&1-{2\choose1}\frac1y+{2\choose2}\frac1{y^2}\\ +\,&1-{3\choose1}\frac1y+{3\choose2}\frac1{y^2}-{3\choose3}\frac1{y^3}\\ &\vdots&=0\\ +\,&1-{10\choose1}\frac1y+{10\choose2}\frac1{y^2}-{10\choose3}\frac1{y^3}+\dots+{10\choose10}\frac1{y^{10}}\end{aligned}

y 10 + y 10 y 9 + y 10 ( 2 1 ) y 9 + ( 2 2 ) y 8 + y 10 ( 3 1 ) y 9 + ( 3 2 ) y 8 ( 3 3 ) y 7 = 0 + y 10 ( 10 1 ) y 9 + ( 10 2 ) y 8 ( 10 3 ) y 7 + + ( 10 10 ) \begin{aligned}\therefore\quad&y^{10} \\+\,&y^{10}-y^9\\ +\,&y^{10}-{2\choose1}y^9+{2\choose2}y^8\\ +\,&y^{10}-{3\choose1}y^9+{3\choose2}y^8-{3\choose3}y^7\\ &\vdots&=0\\ +\,&y^{10}-{10\choose1}y^9+{10\choose2}y^8-{10\choose3}y^7+\dots+{10\choose10}\end{aligned}

Now, by Vieta's formulas, the sum of the roots of this equation must be b a -\frac ba , where a a is the leading coefficient and b b is the second coefficient. n = 0 10 y n = 1 ( 2 1 ) ( 3 1 ) ( 4 1 ) ( 10 1 ) 1 + 1 + 1 + + 1 Eleven 1 ’s n = 0 10 1 1 x n = 1 + 2 + 3 + 4 + + 10 11 = 10 ( 10 + 1 ) 2 × 11 = 5 \begin{aligned}\therefore\sum_{n=0}^{10}y_n&=-\frac{-1-{2\choose1}-{3\choose1}-{4\choose1}-\dots-{10\choose1}}{\underbrace{1+1+1+\dots+1}_{\text{Eleven }1\text{'s}}}\\ \therefore\sum_{n=0}^{10}\frac1{1-x_n}&=\frac{1+2+3+4+\dots+10}{11}\\ &=\frac{10(10+1)}{2\times11}\\ &=\boxed{5}\end{aligned}

Otto Bretscher
Jan 8, 2019

If x x is a (non-real) root, then so is its complex conjugate x ˉ \bar{x} . Also, x = 1 |x|=1 since x x is an 11th root of unity. We can conclude that 1 1 x + 1 1 x ˉ = 2 x x ˉ 1 x x ˉ + x x ˉ = 1 \frac{1}{1-x}+\frac{1}{1-\bar{x}}=\frac{2-x-\bar{x}}{1-x-\bar{x}+x\bar{x}}=1 . Since there are five such conjugate pairs, the answer is 5 \boxed{5} .

How did you get x x to be an 11th root of unity? Could you please elaborate a little more. :)

Krish Shah - 1 year, 1 month ago
ShihYin Huang
Apr 2, 2020

Hassan Abdulla
Jan 11, 2019

f ( x ) = n = 1 10 ( x x n ) ln ( f ( x ) ) = ln ( n = 1 10 ( x x n ) ) = n = 1 10 ln ( x x n ) d d x ln ( f ( x ) ) = d d x n = 1 10 ln ( x x n ) f ( x ) f ( x ) = n = 1 10 1 x x n put x = 1 n = 1 10 1 1 x n = f ( 1 ) f ( 1 ) = 1 + 2 + + 10 1 + 1 + + 1 Eleven 1 = 5 \begin{aligned} f(x) & = \prod_{n=1}^{10}{\left ( x-x_n \right )}\\ \ln\left ( f(x) \right )&=\ln\left ( \prod_{n=1}^{10}{\left ( x-x_n \right )} \right )=\sum_{n=1}^{10}{\ln\left ( x-x_n \right )} \\ \frac{d}{dx} \ln\left ( f(x) \right )&=\frac{d}{dx}\sum_{n=1}^{10}{\ln\left ( x-x_n \right )} \\ \frac{f^{'}(x)}{f(x)} & =\sum_{n=1}^{10}{\frac{1}{x-x_n}} \\ & \color{#D61F06} \text{put } x=1 \\ \sum_{n=1}^{10}{\frac{1}{1-x_n}} &= \frac{f^{'}(1)}{f(1)} = \frac{1+2+\cdots+10}{\underbrace{1+1+\cdots+1}_{\text{Eleven } 1}}=5 \end{aligned}

S = n = 1 10 1 1 x n = k = 1 10 n = 1 , n k 10 ( 1 x n ) n = 1 10 ( 1 x n ) If f ( x ) = x 10 + x 9 + + x + 1 = 0 f ( x ) = n = 1 10 ( x x n ) = 10 n = 0 9 ( 1 ) n ( 9 n ) ( 10 n ) S n f ( 1 ) where S n symmetric sums with S 0 = 1 (See note.) = n = 0 9 ( 1 ) n ( 10 n ) S n 11 By Vieta;s formula S n = ( 1 ) n (See reference) = n = 0 9 ( 10 n ) 11 = n = 1 10 n 11 = 10 ( 10 + 1 ) 2 11 = 5 \begin{aligned} S & = \sum_{n=1}^{10} \frac 1{1-x_n} \\ & = \frac {\sum_{k=1}^{10} \prod_{n=1, n \ne k}^{10}(1-x_n)}{\color{#3D99F6}\prod_{n=1}^{10}(1-x_n)} & \small \color{#3D99F6} \text{If }f(x) = x^{10}+x^9+\cdots + x + 1 = 0 \implies f(x) = \prod_{n=1}^{10}(x-x_n) \\ & = \frac {\displaystyle 10\sum_{n=0}^9 (-1)^n \frac {\binom 9n}{\binom {10}n} \color{#D61F06}S_n}{\color{#3D99F6}f(1)} & \small \color{#D61F06} \text{where }S_n \text{ symmetric sums with }S_0 = 1 \text{ (See note.)} \\ & = \frac {\sum_{n=0}^9 (-1)^n(10-n)\color{#D61F06}S_n}{\color{#3D99F6}11} & \small \color{#D61F06} \text{By Vieta;s formula }S_n = (-1)^n \text{ (See reference)} \\ & = \frac {\sum_{n=0}^9 (10-n)}{11} \\ & = \frac {\sum_{n=1}^{10} n}{11} \\ & = \frac {\frac {10(10+1)}2}{11} \\ & = \boxed 5 \end{aligned}


  • Note: Symmetric sums: S 1 = k = 1 n x k , S 2 = j k n x j x k , S 3 = i j k n x i x j x k , S n = k = 1 n x k \displaystyle S_1 = \sum_{k=1}^n x_k,\ S_2 = \sum_{j \ne k}^n x_j x_k,\ S_3 = \sum_{i \ne j \ne k}^n x_i x_j x_k, \cdots S_n = \prod_{k=1}^n x_k .
  • Reference: Vieta's formula
Mark Hennings
Jan 8, 2019

Note that f ( x ) = x 10 + x 9 + + x + 1 f(x) = x^{10} + x^9 + \cdots + x + 1 is such that ( x 1 ) f ( x ) = x 11 1 (x-1)f(x) = x^{11} - 1 , so that x f ( 1 x ) = ( 1 x ) 11 1 -xf(1-x) = (1-x)^{11} - 1 , and hence x f ( 1 x ) = ( x 1 ) 11 + 1 = j = 1 11 ( 11 j ) ( 1 ) 11 j x j g ( x ) = f ( 1 x ) = j = 0 10 ( 1 ) 10 j ( 11 j + 1 ) x j = x 10 ( 11 10 ) x 9 + ( 11 2 ) x + ( 11 1 ) \begin{aligned} xf(1-x) &= \; (x-1)^{11} + 1 \; = \; \sum_{j=1}^{11}\binom{11}{j}(-1)^{11-j}x^j \\ g(x) \; =\; f(1-x) & = \; \sum_{j=0}^{10} (-1)^{10-j}\binom{11}{j+1}x^j \; = \; x^{10} - \binom{11}{10}x^9+ \cdots - \binom{11}{2}x + \binom{11}{1} \end{aligned} and g ( x ) g(x) has roots 1 x j 1 - x_j for 1 j 10 1 \le j \le 10 . Thus we deduce that j = 1 10 1 1 x j = ( 11 2 ) ( 11 1 ) = 5 \sum_{j=1}^{10}\frac{1}{1-x_j} \; = \; \frac{\binom{11}{2}}{\binom{11}{1}} \; = \; \boxed{5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...