Roots and powers - simplify

Algebra Level 2

I have got this one on my test a month ago. I liked it, so I wanted to share it.

Simplify this expression.

( a 2 ) 3 × a 2 3 ( a 1 3 ) 4 × a 5 \dfrac{(a^{2})^{3} \times \sqrt[3]{a^{2}}}{(a^{\frac{1}{3}})^{4} \times a^{5}}

a 3 \sqrt[3]{a} 1 a \sqrt{\frac{1}{a}} a 2 4 \sqrt[4]{a^{2}} a 6 a^{6} 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Dawid Szefler
Jun 4, 2018

We will be using some of the exponent rules .

( a 2 ) 3 × a 2 3 ( a 1 3 ) 4 × a 5 \frac{(a^{2})^{3} \times \sqrt[3]{a^{2}}}{(a^{\frac{1}{3}})^{4} \times a^{5}} = a 6 × a 2 3 a 4 3 × a 5 \frac{a^6 \times a^\frac{2}{3}}{a^\frac{4}{3} \times a^5} = a 6 + 2 3 a 4 3 + 5 \frac{a^{6+\frac{2}{3}}}{a^{\frac{4}{3}+5}} = a 18 3 + 2 3 a 4 3 + 15 3 \frac{a^{\frac{18}{3}+\frac{2}{3}}}{a^{\frac{4}{3}+\frac{15}{3}}} = a 20 3 a 19 3 \frac{a^{\frac{20}{3}}}{a^{\frac{19}{3}}} = a 20 3 19 3 a^{\frac{20}{3}-\frac{19}{3}} = a 1 3 a^\frac{1}{3} = a 3 \sqrt[3]{a}

Here is the answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...