Roots and Riemann

Calculus Level 3

lim n ( 1 n n + 1 + 1 n n + 2 + + 1 n n + n ) \large \lim_{n \to\ \infty} \left(\frac{1}{\sqrt{n}\sqrt{n + 1}} + \frac{1}{\sqrt{n}\sqrt{n + 2}} + \cdots + \frac{1}{\sqrt{n}\sqrt{n + n}} \right)

The value of the limit above can be expressed as a b c d \displaystyle a\sqrt{b} - \frac cd , where a a , b b , c c , and d d are positive integers, gcd ( c , d ) = 1 \gcd(c, d) = 1 , and b b is square-free.

Find a 4 + b 3 + c 2 + d a^4 + b^3 + c^2 + d .


The answer is 29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zach Abueg
May 25, 2017

Relevant wiki: Riemann Sums

L = lim n ( 1 n n + 1 + 1 n n + 2 + + 1 n n + n ) = lim n i = 1 n 1 n n + i Rewrite as a Riemann sum: lim n i = 1 n 1 n f ( i n ) = lim n i = 1 n ( 1 n 1 n ( 1 + i n ) ) = lim n i = 1 n ( 1 n 1 n 1 1 + i n ) = lim n i = 1 n ( 1 n 1 1 + i n ) lim n i = 1 n 1 n f ( i n ) = 0 1 f ( x ) d x = 0 1 1 1 + x d x = 2 1 + x 0 1 = 2 2 2 \begin{aligned} L & = \lim_{n \to\ \infty} \Bigg(\frac{1}{\sqrt{n}\sqrt{n + 1}} + \frac{1}{\sqrt{n}\sqrt{n + 2}} + \ \cdots \ + \ \frac{1}{\sqrt{n}\sqrt{n + n}} \Bigg) \\ & = \lim_{n \to\ \infty} \ \sum_{i \ = \ 1}^{n} \frac {1}{\sqrt{n} \sqrt{n + i}} & \small \color{#3D99F6} \text{Rewrite as a Riemann sum: }\lim_{n \to\ \infty} \sum_{i \ = \ 1}^{n} \frac 1n \cdot f\bigg(\frac in\bigg) \\ & = \lim_{n \to\ \infty} \ \sum_{i \ = \ 1}^{n} \ \Bigg(\frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{n\big(1 + \frac in\big)}}\Bigg) \\ & = \lim_{n \to\ \infty} \ \sum_{i \ = \ 1}^{n} \ \Bigg(\frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{n}} \cdot \frac {1}{\sqrt{1 + \frac in}}\Bigg) \\ & = \lim_{n \to\ \infty} \ \sum_{i \ = \ 1}^{n} \ \Bigg(\frac 1n \cdot \frac {1}{\sqrt{1 + \frac in}}\Bigg) & \small \color{#3D99F6} \lim_{n \to\ \infty} \sum_{i \ = \ 1}^{n} \frac 1n \cdot f\bigg(\frac in\bigg) = \int_0^1 f(x) \ dx \\ & = \int_0^1 \frac{1}{\sqrt{1 + x}} \ dx \\ & = 2\sqrt{1 + x} \ \bigg|_0^1 \\ & = 2\sqrt{2} - 2 \end{aligned}

a 4 + b 3 + c 2 + d = 2 4 + 2 3 + 2 2 + 1 = 29 \displaystyle \implies a^4 + b^3 + c^2 + d = 2^4 + 2^3 + 2^2 + 1 = 29

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...