Reciprocated Insane Roots

Algebra Level 5

Let a , b , c , d , e a,b,c,d,e be the roots to the polynomial f ( x ) = x 5 + 9 x 4 + 7 x 3 + 16 x 2 + 6 x + 7 f(x) = x^5 + 9x^4 + 7x^3 + 16x^2 + 6x + 7

The value of 1 a 2 + 1 b 2 + 1 c 2 + 1 d 2 + 1 e 2 \frac {1}{a^2} + \frac {1}{b^2} + \frac {1}{c^2} + \frac {1}{d^2} + \frac {1}{e^2} can be written in the form of p q - \frac {p}{q} where p , q p,q are coprime positive integers.

What is the value of p q p-q ?


The answer is 139.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Lavisha Parab
Mar 5, 2015

By transformation of roots, x = 1 α 2 x = \frac {1}{\alpha^2}

So α = 1 x \alpha=\frac {1}{√x}

0 = 7 x 2 x + 6 x 2 + 16 x x + 7 x + 9 x + 1 0= 7x^2√x + 6x^2 + 16x√x + 7x + 9√x + 1

[ ( 7 x 2 + 16 x + 9 ) x ] 2 = [ ( 6 x 2 + 7 x + 1 ) ] 2 [(7x^2 + 16x + 9)√x]^2 = [-(6x^2 + 7x + 1)]^2

Considering only terms of x 5 a n d x 4 x^5\quad and\quad x^4

49 x 5 + 224 x 4 + . . . = 36 x 4 + . . . 49x^5 + 224x^4 + ... = 36x^4 + ...

So sum of roots = 188 49 =-\frac {188}{49}

Answer = 139

Nice and better solution. I gave mine only to show another method.

Niranjan Khanderia - 6 years, 1 month ago

Write a comment or ask a question...

Niranjan Khanderia - 6 years, 1 month ago

B y V i e t a . . . . S u m o f r e c i p r o c a l o f r o o t s S + = 6 7 . S u m o f r e c i p r o c a l o f r o o t s m u l t i p l i e d t w o a t a t i m e S X = 16 7 . S + 2 = S u m o f s q a r e s o f r e c i p r o c a l o f t h e r o o t s . S + 2 = S + 2 + 2 S X , ( 6 7 ) 2 = S + 2 + 2 16 7 S + 2 = 36 49 32 7 S + 2 = 188 49 = p q . p q = 139 By~Vieta.... Sum~of~ reciprocal ~of~ roots~S_+=- \dfrac 6 7 .\\Sum~of~ reciprocal ~of~ roots~multiplied~ two~ at~ a~time~S_X=\dfrac{16} 7 .\\ S_{+^2}=Sum~of~sqares~of~reciprocal~of~the~roots.\\\therefore~S_+^2=S_{+^2} +2*S_X,\\\implies~\left(- \dfrac 6 7 \right)^{\large 2}=S_{+^2} +2*\dfrac{16} 7\\ \therefore~S_{+^2}=\dfrac{36}{49}- \dfrac{32} 7 \\\implies~~S_{+^2}=- \dfrac {188}{49} = -\dfrac p q . ~~~~~\implies~p-q =~~~~~~~~~~~~~\color{#D61F06}{ \large 139}

Hassan Abdulla
Aug 10, 2019

f ( x ) = i = 1 5 ( x x i ) where x i are the roots of f ( x ) ln ( f ( x ) ) = ln ( i = 1 5 ( x x i ) ) = i = 1 5 ln ( x x i ) f ( x ) f ( x ) = i = 1 5 1 x x i differentiate both sides f ( x ) f ( x ) ( f ( x ) ) 2 f 2 ( x ) = i = 1 5 1 ( x x i ) 2 again differentiate both sides f ( 0 ) f ( 0 ) ( f ( 0 ) ) 2 f 2 ( 0 ) = i = 1 5 1 ( 0 x i ) 2 = i = 1 5 1 x i 2 substitute x = 0 i = 1 5 1 x i 2 = 188 49 see the Note N o t e : f ( x ) = k = 0 5 a k x k f ( 0 ) = a 0 = 7 f ( x ) = k = 1 5 k a k x k 1 f ( 0 ) = 1 a 1 = 6 f ( x ) = k = 2 5 k ( k 1 ) a k x k 2 f ( 0 ) = 2 1 a 2 = 2 16 = 32 \begin{aligned} f(x) &=\prod\limits_{i=1}^5 (x - x_i) \text{ where } x_i \text{ are the roots of } f(x) \\ \ln(f(x)) &= \ln\left ( \prod\limits_{i=1}^5 (x - x_i) \right ) = \sum\limits_{i=1}^5 \ln(x - x_i) \\ \frac{f^{'}(x)}{f(x)} &= \sum\limits_{i=1}^5 \frac{1}{x - x_i} && \color{#D61F06} \text{differentiate both sides}\\ \frac{f^{''}(x)f(x)-\left ( f^{'}(x) \right )^2}{f^2(x)} &= \sum\limits_{i=1}^5 \frac{-1}{(x - x_i)^2} && \color{#D61F06} \text{again differentiate both sides}\\ \frac{f^{''}(0)f(0)-\left ( f^{'}(0) \right )^2}{f^2(0)} &= \sum\limits_{i=1}^5 \frac{-1}{(0 - x_i)^2} =\sum\limits_{i=1}^5 \frac{-1}{x^2_i} && \color{#D61F06} \text{substitute x = 0}\\ \sum\limits_{i=1}^5 \frac{1}{x^2_i} &= - \frac{188}{49} && \color{#D61F06} \text{see the Note}\\ \color{#3D99F6} Note: \\ &\color{#3D99F6} f(x)= \sum\limits_{k=0}^5 a_k x^k \Rightarrow f(0) = a_0 = 7\\ &\color{#3D99F6} f'(x)= \sum\limits_{k=1}^5 k \cdot a_k x^{k-1} \Rightarrow f'(0) = 1 \cdot a_1 = 6 \\ &\color{#3D99F6} f''(x)= \sum\limits_{k=2}^5 k(k-1) \cdot a_k x^{k-2} \Rightarrow f''(0) = 2 \cdot 1 \cdot a_2 = 2 \cdot 16 = 32 \\ \end{aligned}

(-6/7)^2-2*16/7=-188/49 , because 1/a,1/b,1/c,1/d,1/e are the roots of equation 7x^5+6x^4+16x^3+7x^2-9x+1=0, then with Viet...

you must provide a detailed solution

Vighnesh Raut - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...