Roots

Algebra Level 3

Let r r be a root of the equation x 2 + 2 x + 6 = 0 x^2 + 2x+6 = 0 . What is the value of ( r + 2 ) ( r + 3 ) ( r + 4 ) ( r + 5 ) (r+2)(r+3)(r+4)(r+5) ?


The answer is -126.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Christian Daang
Nov 3, 2014

3 solutions:

Solution 1:

In the following expansion, we'll replace r²+2r+6 with 0.

(r+2)(r+3)(r+4)(r+5) = (r²+5r+6)(r²+9r+20) = (r²+2r+6+3r)(r²+2r+6+7r+14) = 3r(7r+14) = 21(r²+2r) = 21(r²+2r+6)-21*6 = -126

Solution 2:

if r is the root of x^2 + 2x + 6 =0 then, r^2 + 2r + 6 is also = to 0.

Evaluate first:

(r+2)(r+3)(r+4)(r+5) = (r^2 + 2r + 6 +3r)(r^2 + 2r + 7r + 6 + 14)

= (3r)(7r + 14)

= 21(r^2 + 2r)

= 21(-6)

= -126

Solution 3:

If r is a root of x^2 + 2x + 6 = 0, (x-r)(x-6/r) = 0 ---> x^2 - x(r+6/r) + 6 = 0 = x^2 + 2x + 6 ---> -x(r+6/r) = 2x ----> r+6/r = -2 -----> r^2 + 2r = -6

then, (r+2)(r+3)(r+4)(r+5) = (r^2)(r+ 6/r + 5)(r+6/r + 14/r + 9)

= (r^2)(5-2)(9-2 + 14/r)

= (3r)(7r+14)

= 21r^2 + 42r

= 21(r^2 + 2r)

= 21(-6)

= -126

ez hahahahaha

Rindell Mabunga - 3 years, 7 months ago
U Z
Nov 3, 2014

x 2 + 2 x + 1 + 5 = 0 x^{2} + 2x + 1 + 5 =0

( x + 1 ) 2 = 5 (x + 1)^{2} = -5

x = 1 ± i 5 x = -1 \pm i\sqrt{5}

( since any root is asked)

thus

( 1 + i 5 + 2 ) ( 1 + i 5 + 3 ) ( 1 + i 5 + 4 ) ( 1 + i 5 + 5 ) (- 1 + i\sqrt{5} + 2)( - 1 + i\sqrt{5} + 3)( - 1 + i\sqrt{5} + 4)( - 1 + i\sqrt{5} + 5)

= ( 1 + i 5 ) ( 2 + i 5 ) ( 3 + i 5 ) ( 4 + i 5 ) = (1 + i\sqrt{5})(2 + i\sqrt{5})(3 + i\sqrt{5})(4 + i\sqrt{5})

= ( 1 + i 5 ) ( 4 + i 5 ) ( 2 + i 5 ) ( 3 + i 5 ) = (1 + i\sqrt{5})(4 + i\sqrt{5})(2 + i\sqrt{5})(3 + i\sqrt{5})

= ( 1 + 5 i 5 ) ( 1 + 5 i 5 ) = ( -1 + 5i\sqrt{5})(1 + 5i\sqrt{5})

= 126 = -126

Ong Zi Qian
Nov 12, 2017

r r is a root of the equation x 2 + 2 x + 6 = 0 x^2 + 2x + 6 = 0 ,

r 2 + 2 r + 6 = 0 \Rightarrow r^2 + 2r + 6 = 0

r 2 + 2 r = 6 \Rightarrow r^2 + 2r= - 6 \rightarrow we can replace r 2 + 2 r r^2+2r with 6 -6

Therefore,

( r + 2 ) ( r + 3 ) ( r + 4 ) ( r + 5 ) (r+2)(r+3)(r+4)(r+5)

= ( r + 2 ) ( r + 5 ) ( r + 3 ) ( r + 4 ) =(r+2)(r+5)(r+3)(r+4)

= ( r 2 + 7 r + 10 ) ( r 2 + 7 r + 12 ) =(r^2+7r+10)(r^2+7r+12)

= [ ( r 2 + 2 r ) + 5 r + 10 ] [ b o l d ( r 2 + 2 r ) + 5 r + 12 ] =[(r^2+2r)+5r+10] [_bold_(r^2+2r)+5r+12]

= ( 6 + 5 r + 10 ) ( 6 + 5 r + 12 ] =({-6}+5r+10)({-6}+5r+12]

= ( 5 r + 4 ) ( 5 r + 6 =(5r+4)(5r+6

= 25 r 2 + 50 r + 24 =25r^2+50r+24

= 25 ( r 2 + 2 r ) + 24 =25(r^2+2r)+24

= 25 ( 6 ) + 24 =25(-6)+24

= 150 + 24 =-150+24

= 126 =\boxed{126}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...