Roots Everywhere

Algebra Level 4

x 3 + 1 x 3 \large \sqrt[3]{x}+\dfrac{1}{\sqrt[3]{x}}

Given that x > 0 x > 0 and 3 ( x 3 1 x 3 ) 3 = 2 \quad \sqrt[3]{3 \left( \sqrt[3]{x}-\dfrac{1}{\sqrt[3]{x}} \right)}=2 , then find the value of the expression above.

3.33 10 3 \frac{10}{3} Some Irrational Number. 100 3 \frac{100}{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Arulx Z
May 17, 2015

Let a a be equal to x 3 \sqrt [ 3 ]{ x }

So accordingly, we need to find the value of a + 1 a a+\frac { 1 }{ a }

3 ( a 1 a ) 3 = 2 3 ( a 1 a ) = 8 a 1 a = 8 3 a 2 2 + ( 1 a ) 2 = 64 9 a 2 + 2 + ( 1 a ) 2 = 64 9 + 4 ( a + 1 a ) 2 = 100 9 a + 1 a = 10 3 x 3 + 1 x 3 = 10 3 \sqrt [ 3 ]{ 3(a-\frac { 1 }{ a } ) } =2\\ 3(a-\frac { 1 }{ a } )=8\\ a-\frac { 1 }{ a } =\frac { 8 }{ 3 } \\ { a }^{ 2 }-2+{ (\frac { 1 }{ a } ) }^{ 2 }=\frac { 64 }{ 9 } \\ { a }^{ 2 }+2+{ (\frac { 1 }{ a } ) }^{ 2 }=\frac { 64 }{ 9 } +4\\ { (a+\frac { 1 }{ a } ) }^{ 2 }=\frac { 100 }{ 9 } \\ a+\frac { 1 }{ a } =\frac { 10 }{ 3 } \\ \sqrt [ 3 ]{ x } +\frac { 1 }{ \sqrt [ 3 ]{ x } } =\frac { 10 }{ 3 }

A very good solution.

Sai Ram - 5 years, 11 months ago

Log in to reply

Thank you!

Arulx Z - 5 years, 11 months ago

Log in to reply

Good solutions are always up voted.

Sai Ram - 5 years, 11 months ago

It is upvoted.

Sai Ram - 5 years, 11 months ago
Lior Alterman
May 14, 2015

let's say:

a = x 3 a\quad=\quad \sqrt [ 3 ]{ x }

so:

3 ( a 1 a ) 3 = 2 \sqrt [ 3 ]{ 3(a-\frac { 1 }{ a } ) } = 2

after cubing and opening:

a 1 a = 8 3 a-\frac { 1 }{ a }=\frac { 8 }{ 3 }

3 a 2 8 a 3 = 0 3{ a }^{ 2 }-8a-3\quad=\quad 0

after solving the sqrt we get:

a 1 = 3 { a }_{ 1 }\quad=\quad 3

a 2 = 1 3 { a }_{ 2 }\quad=\quad -\frac { 1 }{ 3 }

and we get 2 solutions:

a + 1 a = 10 3 o r 10 3 a+\frac { 1 }{ a } \quad=\quad \frac { 10 }{ 3 } \quad or\quad -\frac { 10 }{ 3 }

and I didn't understand why not 10 3 -\frac { 10 }{ 3 }

c'mon... 3.33... nooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo....

Julian Poon - 6 years ago

Log in to reply

Why it can't be 3.33,as 10/3 =3.33?????

naitik sanghavi - 4 years, 11 months ago

If a + 1 a = 10 3 a+\frac{1}{a}=-\frac{10}{3} , solving it as a quadratic equation, we would get x 3 = 1 3 or x 3 = 3 \sqrt[3]{x}=-\frac{1}{3}~\text{or}~\sqrt[3]{x}=-3 . Then x 3 1 x 3 \sqrt[3]{x}-\frac{1}{\sqrt[3]{x}} would be equal to 8 9 \frac{8}{9} or 8 9 -\frac{8}{9} , neither of which satisfy the given equation. Hence, we have a + 1 a = 10 3 a+\frac{1}{a}=\frac{10}{3} .

Omkar Kulkarni - 6 years, 1 month ago

Log in to reply

Right. When you square or cube an equation, you run the risk of introducing multiple solutions. E.g. x = 1 x 2 = 1 x = 1 \Rightarrow x^2 = 1 .

Hence we have to check the solutions and verify that they are indeed solutions to the original equation.

Calvin Lin Staff - 6 years ago

If a= -3, or -1/3, then (a-1/a) is 8/3, not 8/9 or -8/9, so both solutions are correct.

Ruslan Abdulgani - 6 years ago

Recall that in the question a condition is given that x > 0 x>0 , which means:

x 3 > 0 3 = 0 \implies \sqrt[3]{x} > \sqrt[3]{0} = 0

a > 0 \implies a>0 .

So, we have to eliminate 1 3 \frac{-1}{3} and accept 3 3 as the sole value satisfying the condition, which when substituted in the required expression gives 10 3 \frac{10}{3}

Arkajyoti Banerjee - 4 years, 10 months ago

Take x 3 = m \sqrt[3]{x}=m , then the given equation becomes:

3 ( m 1 m ) 3 = 2 \sqrt[3]{3(m - \frac{1}{m})}=2

Cubing both sides,

3 ( m 1 m ) = 8 \implies 3(m - \frac{1}{m})=8

m 1 m = 8 3 \implies m - \frac{1}{m} = \frac{8}{3}

Multiplying both sides of the equation by 3 m 3m ,

3 m 2 3 = 8 m \implies 3m^2 - 3 = 8m

3 m 2 8 m 3 = 0 \implies 3m^2 -8m -3=0

m = 3 , 1 3 \implies \boxed{m=3, \frac{-1}{3}}

But recall that in the question a condition is given that x > 0 x>0 , which means:

x 3 > 0 3 = 0 \implies \sqrt[3]{x} > \sqrt[3]{0} = 0

m > 0 \implies m>0 .

So, we have to eliminate 1 3 \frac{-1}{3} and accept 3 3 as the sole value satisfying the condition.

Moving forward,

x 3 + 1 x 3 = 3 + 1 3 = 10 3 \sqrt[3]{x}+\dfrac{1}{\sqrt[3]{x}} = 3 + \frac{1}{3} = \boxed{\frac{10}{3}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...