Roots From Other Dimension

Algebra Level 4

Let x 1 x_1 , x 2 x_{2} and x 3 x_{3} be the roots of x 3 + a x 2 + a x + 1 = 0 x^{3}+ax^{2}+ax+1=0 and y 1 y_1 , y 2 y_{2} and y 3 y_{3} be the roots of y 3 + 2 a y 2 + 2 a y + 1 = 0 y^{3}+2ay^{2}+2ay+1=0 , where a > 0 a>0 . If y 1 2 + y 2 2 + y 3 2 = x 1 2 + x 2 2 + x 3 2 + 133 y_{1}^{2}+y_{2}^{2}+y_{3}^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+133 , find a a .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

By Vieta's formula , we have:

{ x 1 + x 2 + x 3 = a x 1 x 2 + x 2 x 3 + x 3 x 1 = a \begin{cases} x_1+x_2+x_3 = - a \\ x_1x_2+x_2x_3+x_3x_1 = a \end{cases}

x 1 2 + x 2 2 + x 3 2 = ( x 1 + x 2 + x 3 ) 2 2 ( x 1 x 2 + x 2 x 3 + x 3 x 1 ) = ( a ) 2 2 a = a 2 2 a \begin{aligned} \implies x_1^2+x_2^2+x_3^2 & = (x_1+x_2+x_3)^2 - 2(x_1x_2+x_2x_3+x_3x_1) \\ & = (-a)^2 - 2a \\ & = a^2 - 2a \end{aligned}

And

{ y 1 + y 2 + y 3 = 2 a y 1 y 2 + y 2 y 3 + y 3 y 1 = 2 a \begin{cases} y_1+y_2+y_3 = - 2a \\ y_1y_2+y_2y_3+y_3y_1 = 2a \end{cases}

y 1 2 + y 2 2 + y 3 2 = ( y 1 + y 2 + y 3 ) 2 2 ( y 1 y 2 + y 2 y 3 + y 3 y 1 ) = ( 2 a ) 2 2 ( 2 a ) = 4 a 2 4 a \begin{aligned} \implies y_1^2+y_2^2+y_3^2 & = (y_1+y_2+y_3)^2 - 2(y_1y_2+y_2y_3+y_3y_1) \\ & = (-2a)^2 - 2(2a) \\ & = 4a^2 - 4a \end{aligned}

Therefore,

y 1 2 + y 2 2 + y 3 2 = x 1 2 + x 2 2 + x 3 2 + 133 4 a 2 4 a = a 2 2 a + 133 3 a 2 2 a 133 = 0 ( a 7 ) ( 3 a + 19 ) = 0 a = 7 for a > 0 \begin{aligned} y_1^2+y_2^2+y_3^2 & = x_1^2+x_2^2+x_3^2 + 133 \\ \implies 4a^2-4a & = a^2-2a+133 \\ 3a^2 - 2a - 133 & = 0 \\ (a-7)(3a+19) & = 0 \\ \implies a & = \boxed{7} & \text{for }a > 0 \end{aligned}

in the last line it should be ( a 7 ) ( 3 a + 19 ) = 0 (a-7)(3a+19)=0 :)

Anirudh Sreekumar - 4 years, 2 months ago

Log in to reply

Thanks, I have changed it.

Chew-Seong Cheong - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...