Roots of a Cubic

Algebra Level 5

If α , β , γ \alpha, \beta, \gamma are the roots of the equation x 3 6 x 2 + 10 x + 1 = 0 x^3-6x^2+10x+1=0 then 1 α 2 + β 2 + 1 β 2 + γ 2 + 1 α 2 + γ 2 = A B \dfrac{1}{\alpha^2+\beta^2}+\dfrac{1}{\beta^2+\gamma^2}+\dfrac{1}{\alpha^2+\gamma^2}=\dfrac{A}{B} where A A and B B are co-prime. Find B A B-A


The answer is 1423.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Happy Melodies
Nov 17, 2014

Not sure whether there's a better solution without bashing like I'll be: First, notice that by Vieta's Formula , we get the following relations between the 3 3 roots: { α + β + γ = 6 α β + α γ + β γ = 10 α β γ = 1 \begin{cases} \alpha + \beta + \gamma = 6\\ \alpha \beta + \alpha \gamma + \beta \gamma = 10 \\ \alpha \beta \gamma = -1 \end{cases} Here I'll be manipulating the above 3 equations (labelled [1], [2], [3] in order of up to down) to give the following expressions to solve the following numerator and denominator expressions. (It is more intuitive to come up with the expressions for denominator and numerator first but I chose to present it this way so that solution will be cleaner.) { α 2 + β 2 + γ 2 = [ 1 ] 2 2 [ 2 ] = 16 α 2 β 2 + α 2 γ 2 + β 2 γ 2 = [ 2 ] 2 2 [ 3 ] [ 1 ] = 112 \begin{cases} \alpha^2 + \beta^2 + \gamma^2 = [1]^2 - 2[2] = 16 \\ \alpha^2 \beta^2+ \alpha^2 \gamma^2 + \beta^2 \gamma^2 = [2]^2 - 2[3][1] = 112 \end{cases} Simply converting the RHS expression into 1 fraction (with a common denominator) we get:

Numerator = ( β 2 + γ 2 ) ( α 2 + γ 2 ) + ( α 2 + β 2 ) ( α 2 + γ 2 ) + ( α 2 + β 2 ) ( β 2 + γ 2 ) = α 4 + β 4 + γ 4 + 3 ( α 2 β 2 + α 2 γ 2 + β 2 γ 2 ) = ( α 2 + β 2 + γ 2 ) 2 + ( α 2 β 2 + α 2 γ 2 + β 2 γ 2 ) = 1 6 2 + 112 = 368 \begin{array} {lcl} & = &(\beta^2 + \gamma^2)(\alpha^2 + \gamma^2) + (\alpha^2 + \beta^2)(\alpha^2 + \gamma^2) + (\alpha^2 + \beta^2)(\beta^2 +\gamma^2) \\ & = & \alpha^4 + \beta^4 +\gamma^4 + 3(\alpha^2 \beta^2+ \alpha^2 \gamma^2 + \beta^2 \gamma^2) \\ & = & (\alpha^2 + \beta^2 + \gamma^2)^2 + (\alpha^2 \beta^2+ \alpha^2 \gamma^2 + \beta^2 \gamma^2) \\ & = & 16^2 + 112 \\ & = & 368 \end{array}

Denominator = ( α 2 + β 2 ) ( α 2 + γ 2 ) ( β 2 + γ 2 ) = ( 16 α 2 ) ( 16 β 2 ) ( 16 γ 2 ) = 1 6 3 ( α β γ ) 2 1 6 2 ( α 2 + β 2 + γ 2 ) + 16 ( α 2 β 2 + α 2 γ 2 + β 2 γ 2 ) = 1791 \begin{array} {lcl} & = & (\alpha^2 + \beta^2)(\alpha^2 + \gamma^2)(\beta^2 +\gamma^2) \\ & = & (16 - \alpha^2)(16- \beta^2)(16 - \gamma^2) \\ & = & 16^3 - (\alpha \beta \gamma)^2 - 16^2(\alpha^2 + \beta^2 + \gamma^2) + 16(\alpha^2 \beta^2+ \alpha^2 \gamma^2 + \beta^2 \gamma^2) \\ & = & 1791 \end{array}

Therefore, B A = 1791 368 = 1423 . B - A = 1791 - 368 = \boxed{1423}. . We're done. :)

Intuition Basically when faced with such question - finding a value of an expression in terms of some roots, the most straightforward method is to use Vieta's to derive the first few relations between the roots. Then, we manipulate the equations (from Vieta's) as well as the given expression to get the value we desire.

There is no problem with your way. +1 for it! This problem is inspired from this one, and I solved it in a similar fashion.

Write the required sum as S = 1 16 α 2 + 1 16 β 2 + 1 16 γ 2 S=\dfrac{1}{16-\alpha^2}+\dfrac{1}{16-\beta^2}+\dfrac{1}{16-\gamma^2} and then use partial fraction decomposition. Lastly, use the fact that for a polynomial f ( x ) f(x) with roots r i r_i , f ( x ) f ( x ) = i = 1 n 1 x r i \dfrac{f'(x)}{f(x)}=\sum_{i=1}^{n} \dfrac{1}{x-r_i} After the partial fraction step, you could also use a root transform. But anyway, my method is as long as yours.. :)

Pratik Shastri - 6 years, 6 months ago

Log in to reply

It may be as long, but it is a much more elegant method! :) Thx for posting it :)

Happy Melodies - 6 years, 6 months ago

i did same

Dev Sharma - 5 years, 8 months ago
Aareyan Manzoor
Feb 3, 2015

lets review vieta's { α + β + γ = 6 α β + α γ + β γ = 10 α β γ = 1 \begin{cases} \alpha + \beta + \gamma = 6\\ \alpha \beta + \alpha \gamma + \beta \gamma = 10 \\ \alpha \beta \gamma = -1 \end{cases} and lets compute some important terms α 2 + β 2 + γ 2 = ( α + β + γ ) 2 2 ( α β + β γ + γ α ) = 6 2 20 = 16 \alpha^2 + \beta^2 + \gamma^2 =(\alpha+\beta+\gamma)^2-2(\alpha\beta+\beta\gamma +\gamma\alpha)=6^2-20=16 α 2 β 2 + α 2 γ 2 + β 2 γ 2 = ( α β + β γ + γ α ) 2 2 α β γ ( α + β + γ ) = 1 0 2 + 12 = 112 \alpha^2\beta^2+ \alpha^2 \gamma^2 + \beta^2 \gamma^2 =(\alpha\beta+\beta\gamma +\gamma\alpha)^2-2 \alpha \beta \gamma (\alpha + \beta + \gamma )=10^2+12=112 now, the Numerator = ( β 2 + γ 2 ) ( α 2 + γ 2 ) + ( α 2 + β 2 ) ( α 2 + γ 2 ) + ( α 2 + β 2 ) ( β 2 + γ 2 ) = α 4 + β 4 + γ 4 + 3 ( α 2 β 2 + α 2 γ 2 + β 2 γ 2 ) = ( α 2 + β 2 + γ 2 ) 2 + ( α 2 β 2 + α 2 γ 2 + β 2 γ 2 ) = 1 6 2 + 112 = 368 \begin{array} {lcl} & = &(\beta^2 + \gamma^2)(\alpha^2 + \gamma^2) + (\alpha^2 + \beta^2)(\alpha^2 + \gamma^2) + (\alpha^2 + \beta^2)(\beta^2 +\gamma^2) \\ & = & \alpha^4 + \beta^4 +\gamma^4 + 3(\alpha^2 \beta^2+ \alpha^2 \gamma^2 + \beta^2 \gamma^2) \\ & = & (\alpha^2 + \beta^2 + \gamma^2)^2 + (\alpha^2 \beta^2+ \alpha^2 \gamma^2 + \beta^2 \gamma^2) \\ & = & 16^2 + 112 \\ & = & 368 \end{array} the denominator ( α 2 + β 2 ) ( β 2 + γ 2 ) ( γ 2 + α 2 ) (\alpha ^2+\beta^2)(\beta^2+\gamma^2)(\gamma^2+\alpha^2) by Daniel Liu 's identity ( a + b ) ( b + c ) ( c + a ) = ( a + b + c ) ( a b + b c + c a ) a b c (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)-abc so, = ( α 2 + β 2 ) ( β 2 + γ 2 ) ( γ 2 + α 2 ) = ( α 2 + β 2 + γ 2 ) ( α 2 β 2 + α 2 γ 2 + β 2 γ 2 ) α 2 β 2 γ 2 = 16 × 112 1 = 1792 1 = 1791 \begin{array}{c}= (\alpha ^2+\beta^2)(\beta^2+\gamma^2)(\gamma^2+\alpha^2)\\=(\alpha^2 + \beta^2 + \gamma^2 )(\alpha^2\beta^2+ \alpha^2 \gamma^2 + \beta^2 \gamma^2)-\alpha^2\beta^2\gamma^2\\=16\times112-1\\=1792-1\\=1791\end{array} so the whole expression is 368 1791 \dfrac{368}{1791} and 1791 368 = 1423 1791-368=\boxed{1423}

Hung Woei Neoh
Jul 9, 2016

For easy typing, let α = a , β = b , γ = c \alpha=a,\;\beta=b,\;\gamma=c

From Vieta's formula, we know that:

a + b + c = 6 a b + a c + b c = 10 a b c = 1 \color{#3D99F6}{a+b+c=6}\\ \color{#D61F06}{ab+ac+bc=10}\\ \color{#EC7300}{abc=-1}

To make the sum a bit simpler to calculate, find a 2 + b 2 + c 2 \color{#20A900}{a^2+b^2+c^2} using Newton's sums:

a 2 + b 2 + c 2 = ( a + b + c ) 2 2 ( a b + a c + b c ) = ( 6 ) 2 2 ( 10 ) = 16 \color{#20A900}{a^2+b^2+c^2}=(\color{#3D99F6}{a+b+c})^2-2(\color{#D61F06}{ab+ac+bc})=(\color{#3D99F6}{6})^2-2(\color{#D61F06}{10})=\color{#20A900}{16}

Our required sum is:

1 a 2 + b 2 + 1 b 2 + c 2 + 1 a 2 + c 2 = 1 16 c 2 + 1 16 a 2 + 1 16 b 2 = ( 16 a 2 ) ( 16 b 2 ) + ( 16 b 2 ) ( 16 c 2 ) + ( 16 a 2 ) ( 16 c 2 ) ( 16 a 2 ) ( 16 b 2 ) ( 16 c 2 ) = 3 ( 1 6 2 ) 2 ( 16 ) ( a 2 + b 2 + c 2 ) + a 2 b 2 + a 2 c 2 + b 2 c 2 1 6 3 1 6 2 ( a 2 + b 2 + c 2 ) + 16 ( a 2 b 2 + a 2 c 2 + b 2 c 2 ) a 2 b 2 c 2 = 3 ( 1 6 2 ) 2 ( 16 ) ( 16 ) + a 2 b 2 + a 2 c 2 + b 2 c 2 1 6 3 1 6 2 ( 16 ) + 16 ( a 2 b 2 + a 2 c 2 + b 2 c 2 ) ( a b c ) 2 = 3 ( 1 6 2 ) 2 ( 1 6 2 ) + a 2 b 2 + a 2 c 2 + b 2 c 2 1 6 3 1 6 3 + 16 ( a 2 b 2 + a 2 c 2 + b 2 c 2 ) ( 1 ) 2 = 1 6 2 + a 2 b 2 + a 2 c 2 + b 2 c 2 16 ( a 2 b 2 + a 2 c 2 + b 2 c 2 ) 1 \dfrac{1}{\color{#20A900}{a^2+b^2}}+\dfrac{1}{\color{#20A900}{b^2+c^2}}+\dfrac{1}{\color{#20A900}{a^2+c^2}}\\ =\dfrac{1}{\color{#20A900}{16-c^2}}+\dfrac{1}{\color{#20A900}{16-a^2}}+\dfrac{1}{\color{#20A900}{16-b^2}}\\ =\dfrac{(16-a^2)(16-b^2)+(16-b^2)(16-c^2)+(16-a^2)(16-c^2)}{(16-a^2)(16-b^2)(16-c^2)}\\ =\dfrac{3(16^2)-2(16)(\color{#20A900}{a^2+b^2+c^2})+\color{#69047E}{a^2b^2+a^2c^2+b^2c^2}}{16^3-16^2(\color{#20A900}{a^2+b^2+c^2})+16(\color{#69047E}{a^2b^2+a^2c^2+b^2c^2})-a^2b^2c^2}\\ =\dfrac{3(16^2)-2(16)(\color{#20A900}{16})+\color{#69047E}{a^2b^2+a^2c^2+b^2c^2}}{16^3-16^2(\color{#20A900}{16})+16(\color{#69047E}{a^2b^2+a^2c^2+b^2c^2})-(\color{#EC7300}{abc})^2}\\ =\dfrac{3(16^2)-2(16^2)+\color{#69047E}{a^2b^2+a^2c^2+b^2c^2}}{16^3-16^3+16(\color{#69047E}{a^2b^2+a^2c^2+b^2c^2})-(\color{#EC7300}{-1})^2}\\ =\dfrac{16^2+\color{#69047E}{a^2b^2+a^2c^2+b^2c^2}}{16(\color{#69047E}{a^2b^2+a^2c^2+b^2c^2})-1}

Now, all we need to do is find this:

( a b + a c + b c ) 2 = a 2 b 2 + a 2 c 2 + b 2 c 2 + 2 ( a 2 b c + a b 2 c + a b c 2 ) a 2 b 2 + a 2 c 2 + b 2 c 2 = ( a b + a c + b c ) 2 2 a b c ( a + b + c ) = ( 10 ) 2 2 ( 1 ) ( 6 ) = 112 (\color{#D61F06}{ab+ac+bc})^2=\color{#69047E}{a^2b^2+a^2c^2+b^2c^2}+2(a^2bc+ab^2c+abc^2)\\ \color{#69047E}{a^2b^2+a^2c^2+b^2c^2}=(\color{#D61F06}{ab+ac+bc})^2-2\color{#EC7300}{abc}(\color{#3D99F6}{a+b+c})=(\color{#D61F06}{10})^2-2(\color{#EC7300}{-1})(\color{#3D99F6}{6})=\color{#69047E}{112}

Substitute this value in:

1 6 2 + a 2 b 2 + a 2 c 2 + b 2 c 2 16 ( a 2 b 2 + a 2 c 2 + b 2 c 2 ) 1 = 1 6 2 + 112 16 ( 112 ) 1 = 256 + 112 1792 1 = 368 1791 \dfrac{16^2+\color{#69047E}{a^2b^2+a^2c^2+b^2c^2}}{16(\color{#69047E}{a^2b^2+a^2c^2+b^2c^2})-1}\\ =\dfrac{16^2+\color{#69047E}{112}}{16(\color{#69047E}{112})-1}\\ =\dfrac{256+112}{1792-1}\\ =\dfrac{368}{1791}

A = 368 , B = 1791 , B A = 1791 368 = 1423 \implies A=368,\; B=1791,\; B-A=1791-368=\boxed{1423}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...