Let a , b , c , d , e and f be constant real numbers such that the roots (for x ) in x 3 + a x 2 + b x − 1 0 5 = 0 are each two more than the roots (for x ) in x 3 − d x 2 + e x − f = 0 . Determine the value of 4 d + 2 e + f .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let r, s, t be the roots of the first equation and u, v, w for the second.
105 = rst = 7 * 3 * 5
u = 7-2=5
v = 5-2 =3
w =3-2=1
f = uvw= 5 * 3 * 1=15
e = uv * vw * uw = 5*3 + 3 * 1 +1 * 5=23
d = u+ v+ w = 1+3+5= 9
4d + 2e + = 97
Typo last line, f +4d+2e=97.
L e t p , q , r b e t h e r o o t s o f s e c o n d e q u a t i o n . ∴ p + 2 , q + 2 , r + 2 a r e t h e r o o t s o f f i r s t e q u a t i o n . ⟹ f r o m V i e t a ′ s f o r m u l a : − S e c o n d e q u a t i o n : − p + q + r = d , p q + q r + r p = e , p q r = f . F i r s t e q u a t i o n : − ( p + 2 ) ( q + 2 ) ( r + 2 ) = 1 0 5 B u t ( p + 2 ) ( q + 2 ) ( r + 2 ) = p q r + 2 ( p q + q r + r p ) + 4 ( p + q + r ) + 8 = 1 0 5 ⟹ 1 0 5 = f + 2 e + 4 d + 8 = 1 0 5 . S o 4 d + 2 e + f = 1 0 5 − 8 = 9 7 .
Let the roots of x 3 + a x 2 + b x − 1 0 5 = 0 be p , q , r . From Vieta's formula, we have
p + q + r = − a p q + p r + q r = b p q r = 1 0 5
Now, we know that the roots of x 3 − d x 2 + e x − f = 0 are p − 2 , q − 2 , r − 2 . Again, from Vieta's formula, we have:
( p − 2 ) + ( q − 2 ) + ( r − 2 ) = d p + q + r − 6 = d d = − a − 6
( p − 2 ) ( q − 2 ) + ( p − 2 ) ( r − 2 ) + ( q − 2 ) ( r − 2 ) = e p q − 2 p − 2 q + 4 + p r − 2 p − 2 r + 4 + q r − 2 q − 2 r + 4 = e p q + p r + q r − 4 ( p + q + r ) + 1 2 = e e = b − 4 ( − a ) + 1 2 = b + 4 a + 1 2
( p − 2 ) ( q − 2 ) ( r − 2 ) = f ( p q − 2 p − 2 q + 4 ) ( r − 2 ) = f p q r − 2 p r − 2 q r + 4 r − 2 p q + 4 p + 4 q − 8 = f p q r − 2 ( p q + p r + q r ) + 4 ( p + q + r ) − 8 = f f = 1 0 5 − 2 b + 4 ( − a ) − 8 = 9 7 − 2 b − 4 a
4 d + 2 e + f = 4 ( − a − 6 ) + 2 ( b + 4 a + 1 2 ) + 9 7 − 2 b − 4 a = − 4 a − 2 4 + 2 b + 8 a + 2 4 + 9 7 − 2 b − 4 a = 9 7
Problem Loading...
Note Loading...
Set Loading...
Let ( α , β , γ ) be the roots of f ( x ) = x 3 + a x 2 + b x − 1 0 5 ( We let f ( x ) = x 3 + a x 2 + b x − 1 0 5 ). Therefore, ( α − 2 , β − 2 , γ − 2 ) are the roots of x 3 − d x 2 + e x − f .
But then, ( α − 2 , β − 2 , γ − 2 ) are the roots of f ( x + 2 ) , since f ( ( α − 2 ) + 2 ) = f ( α ) = 0 .
Therefore, ( α − 2 , β − 2 , γ − 2 ) are the roots of f ( x + 2 ) = ( x + 2 ) 3 + a ( x + 2 ) 2 + b ( x + 2 ) − 1 0 5 = x 3 + ( a + 6 ) x 2 + ( 1 2 + 4 a + b ) x + ( 4 a + 2 b − 9 7 ) .
This implies that x 3 + ( a + 6 ) x 2 + ( 1 2 + 4 a + b ) x + ( 4 a + 2 b − 9 7 ) = x 3 − d x 2 + e x − f . Comparing coefficients, we get that d = − a − 6 , e = 1 2 + 4 a + b and f = 9 7 − 4 a − 2 b .
Therefore, our required answer is 4 d + 2 e + f = 4 ( − a − 6 ) + 2 ( 1 2 + 4 a + b ) + ( 9 7 − 4 a − 2 b ) = 9 7 + 2 4 − 2 4 + 8 a − 8 a + 2 b − 2 b = 9 7 .