Roots of a 100-th degree polynomial

Algebra Level 5

f ( x ) = x 100 + a 99 x 99 + + a 1 x + a 0 \large f(x)=x^{100}+a_{99}x^{99}+\ldots+a_{1}x+a_{0}

Let f ( x ) f(x) be a 100th degree polynomial such that a 99 = 10 , a_{99}=-10, a 98 = 5 a_{98}=5 and a 97 = 2 a_{97}=-2 with roots x 1 , x 2 , x 3 , x 100 x_{1}, x_{2}, x_{3}, \ldots x_{100} . Evaluate k = 1 100 x k 3 \displaystyle \sum_{k=1}^{100} x_{k}^3 .


The answer is 856.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Arturo Presa
Aug 8, 2015

Using Vieta's formulas we have that a 99 = k = 1 100 x k = 10 , -a_{99}=\sum_{k=1}^{100}{x_{k}}=10, a 98 = 1 k < l 100 x k x l = 5 , a_{98}=\sum_ {1\leq k<l\leq 100}{x_{k}x_{l}}=5, and a 97 = 1 k < l < m 100 x k x l x m = 2. -a_{97}=\sum_{1\leq k<l<m\leq 100}{x_{k}x_{l}x_{m}}=2.

Then k = 1 100 x k 2 = ( k = 1 100 x k ) 2 2 1 k < l 100 x k x l = 1 0 2 2 5 = 90. \sum_{k=1}^{100} x_{k}^2=(\sum_{k=1}^{100}x_{k})^2-2 *\sum_ {1\leq k<l\leq 100}{x_{k}x_{l}}=10^{2}-2*5=90. Therefore k = 1 100 x k 3 = k = 1 100 x k 3 3 1 k < l < m 100 x k x l x m + 6 = \sum_{k=1}^{100} x_{k}^3= \sum_{k=1}^{100} x_{k}^3 -3 *\sum_ {1\leq k<l<m\leq 100}{x_{k}x_{l}x_{m}} +6= = ( k = 1 100 x k ) ( k = 1 100 x k 2 1 k < l 100 x k x l ) + 6 = 10 ( 90 5 ) + 6 = 856 =(\sum_{k=1}^{100}x_{k})(\sum_{k=1}^{100} x_{k}^2-\sum_ {1\leq k<l\leq 100}{x_{k}x_{l}})+6=10*(90-5)+6=856

Love this problem and the solution. :)

Revanth Gumpu - 5 years, 10 months ago

Log in to reply

Thank you @RevanthGumpu !

Arturo Presa - 5 years, 10 months ago
Chew-Seong Cheong
Aug 17, 2015

Using Vieta's formulas, we have:

{ P n = k = 1 100 x k n S 1 = k = 1 100 x k = a 99 = 10 S 2 = c y c l x j x k = a 98 = 5 S 3 = c y c l x i x j x k = a 97 = 2 \begin{cases} P_n = \displaystyle \sum_{k=1}^{100} x_k^n \\ S_1 = \displaystyle \sum_{k=1}^{100} x_k = - a_{99} = 10 \\ S_2 = \displaystyle \sum_{cycl} x_jx_k = a_{98} = 5 \\ S_3 = \displaystyle \sum_{cycl} x_ix_jx_k = -a_{97} = 2 \end{cases}

P 1 = S 1 = 10 P 2 = S 1 P 1 2 S 2 = 10 ( 10 ) 2 ( 5 ) = 90 P 3 = S 1 P 2 S 2 P 1 + 3 S 3 k = 1 100 x k 3 = 10 ( 90 ) 5 ( 10 ) + 3 ( 2 ) = 856 \begin{aligned} P_1 & = S_1 = 10 \\ P_2 & = S_1 P_1 - 2S_2 = 10(10) - 2(5) = 90 \\ P_3 & = S_1 P_2 - S_2 P_1 + 3S_3 \\ \Rightarrow \sum_{k=1}^{100} x_k^3 & = 10(90) - 5(10) + 3(2) = \boxed{856} \end{aligned}

i did same...

Dev Sharma - 5 years, 9 months ago
Akshat Sharda
Sep 15, 2015

Newton's Sum is great!!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...