Roots of Cubic Equation

Algebra Level 5

For a real number k k , the cubic equation 1 3 x 3 x = k \frac{1}{3}x^3-x=k has three distinct roots α , β \alpha, \beta and γ \gamma . If m = min k R ( α + β + γ ) , m=\min_{k\in \mathbb{R}}(|\alpha|+|\beta|+|\gamma|), what is m 2 ? m^2?


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akif Khan
May 3, 2014

A p p l y i n g A M , G M i n e q u a l i t y t o a b o v e e x p r e s s i o n α + β + γ 3 α β γ 3 α + β + γ 3 3 k 3 N o w , a b o v e e x p r e s s i o n w i l l b e m i n i m u m w h e n k = 0 , P u t t i n g k = 0 , i n c u b i c e q u a t i o n w e g e t r o o t s α = 0 , β = 3 , γ = 3 T h e r e f o r e , m 2 = 12 Applying\quad AM,GM\quad inequality\quad to\quad above\quad expression\\ \Rightarrow \frac { \quad \left| \alpha \right| +\left| \beta \right| +\left| \gamma \right| }{ 3 } \ge \sqrt [ 3 ]{ \left| \alpha \beta \gamma \right| } \\ \Rightarrow \left| \alpha \right| +\left| \beta \right| +\left| \gamma \right| \ge \quad 3\sqrt [ 3 ]{ \left| 3k \right| } \\ Now,\quad above\quad expression\quad will\quad be\quad minimum\quad when\quad k=0,\quad \\ Putting\quad k=0,\quad in\quad cubic\quad equation\quad we\quad get\quad roots\quad \alpha =0,\beta =\sqrt { 3 } ,\gamma =-\sqrt { 3 } \\ Therefore,\quad { m }^{ 2 }=12

All that you have proved is that the RHS of the inequality attains it's minimum at k = 0 k = 0 . You still have to prove that the LHS also attains it's minimum at k = 0 k = 0 .

bahut badiya bete ;-)

pulkit gupta - 7 years, 1 month ago
Ankit Gupta
Apr 17, 2014

solve when k=0

You have to prove that the minimum of the sum will attain when k = 0 k=0 .

Jit Ganguly - 7 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...