Roots of Factorials

Algebra Level 2

Which is greater: 9 ! 9 or 10 ! 10 ? \large \sqrt[9]{9!} \quad \text{or}\quad \sqrt[10]{10!}\,?

Notation: ! ! is the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


Try another problem on my set! Let's Practice
9 ! 9 \large \sqrt[9]{9!} 10 ! 10 \large \sqrt[10]{10!} Both are equal

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

We want to determine which mathematical relation ( > , < , = >, < , = ) that satisfy the question mark (?) in

9 ! 9 ? 10 ! 10 . \large \sqrt[9]{9!} \quad ? \quad \sqrt[10]{10!} .

Recall that b a = b 1 / a \sqrt[a]{b} = b^{1/a} , then we can rewrite the above as

( 9 ! ) 1 / 9 ? ( 10 ! ) 1 / 10 \large (9!)^{1/9} \quad ? \quad (10!)^{1/10}

To remove the fractions, let's raise both sides by the power 9 × 10 9 \times 10 ,

( 9 ! ) 9 × 10 / 9 ? ( 10 ! ) 9 × 10 / 10 \large (9!)^{9\times10/9} \quad ? \quad (10!)^{9\times10/10}

which simplifies to

( 9 ! ) 10 ? ( 10 ! ) 9 \large (9!)^{10} \quad ? \quad (10!)^{9}

and is equivalent to

( 9 ! ) 9 × ( 9 ! ) ? ( 9 ! × 10 ) 9 . \large (9!)^{9} \times (9!) \quad ? \quad (9! \times10)^{9} .

or ( 9 ! ) 9 × 9 ! ? ( 9 ! ) 9 × 1 0 9 . \large (9!)^{9} \times 9! \quad ? \quad (9!) ^{9} \times 10^9 .

Removing both sides of by ( 9 ! ) 9 (9!)^9 gives

( 9 ! ) 9 × 9 ! ? ( 9 ! ) 9 × 1 0 9 . \large \bcancel{(9!)^{9}} \times 9! \quad ? \quad \bcancel{(9!)^{9}} \times 10^9 .

This leaves us with

1 × 2 × × 9 ? 10 × 10 × 10 × × 10. 1\times2\times\cdots\times9 \quad ? \quad 10\times10\times10\times \cdots\times10 .

Since there are an equal number of integers being multiplied (in both sides), and that all the integers on the right hand are larger than those of the left hand side, then L H S < R H S LHS < RHS .

Hence, 9 ! < 1 0 9 9! \quad <\quad 10^9 , or equivalently, 9 ! 9 < 10 ! 10 \large \sqrt[9]{9!} \quad < \quad \sqrt[10]{10!} .

Excellent solution

Arpan Mathur - 4 years, 4 months ago

Log in to reply

Thank you.

Fidel Simanjuntak - 4 years, 4 months ago

Good Solution!

Md Zuhair - 4 years, 5 months ago

Log in to reply

Thank you.

Fidel Simanjuntak - 4 years, 5 months ago

Consider 10 ! 10 9 ! 9 = ( 9 ! ) 1 10 1 9 1 0 1 10 = ( 9 ! ) 1 90 1 0 1 10 = 1 0 1 10 ( 9 ! ) 1 90 > 1 0 1 10 ( 1 0 9 ) 1 90 = 1 0 1 10 1 0 1 10 = 1 \dfrac {\sqrt[10]{10!}}{\sqrt[9]{9!}} = (9!)^{\frac 1{10}-\frac 19} 10^{\frac 1{10}} = (9!)^{-\frac 1{90}} 10^{\frac 1{10}} = \dfrac {10^{\frac 1{10}}}{(9!)^\frac 1{90}} > \dfrac {10^{\frac 1{10}}}{(10^9)^\frac 1{90}} = \dfrac {10^\frac 1{10}} {10^\frac 1{10}} = 1 . Therefore, 10 ! 10 9 ! 9 > 1 10 ! 10 > 9 ! 9 \dfrac {\sqrt[10]{10!}}{\sqrt[9]{9!}} > 1 \implies \boxed{\sqrt[10]{10!}} > \sqrt[9]{9!} .

I want general answer

Parnab Ghosh - 4 years, 4 months ago

Exactly my way

Nabh Spandan - 4 years, 4 months ago
Rab Gani
Jan 8, 2017

(9!)^(1/9) ...... (10!)^(1/10), Rise to the power (90) for both sides, then (9!)^10 ...........(10!)^9, we have (9!)^9 x (9!) .....(9!)^9 x (10)^9, divided both by (9!)^9, (9!)< (10)^9, so (9!)^(1/9) < (10!)^(1/10)

Mohammad Khaza
Jul 2, 2017

(9!)^(1/9) =4.1...... (a)

and (10!)^(1/10)=4.5.................(b)

so,b>a

Christian Daang
Feb 3, 2017

By AM - GM

9 ! 9 < 1 + 2 + 3 + + 9 9 10 ! 10 < 1 + 2 + 3 + + 10 10 9 ! 9 × 10 ! 10 < 1 + 2 + 3 + + 9 9 × 1 + 2 + 3 + + 10 10 = 2475 < ( 10 ! ) 2 10 < 1 + 2 + 3 + + 10 10 × 1 + 2 + 3 + + 10 10 9 ! 9 < ( 10 ! ) 10 \sqrt[9]{9!} < \cfrac{1 + 2 + 3 + \cdots + 9}{9} \\ \sqrt[10]{10!} < \cfrac{1 + 2 + 3 + \cdots + 10}{10} \\ \sqrt[9]{9!} \times \sqrt[10]{10!} < \cfrac{1 + 2 + 3 + \cdots + 9}{9} \times \cfrac{1 + 2 + 3 + \cdots + 10}{10} = 2475 < \sqrt[10]{(10!)^2 } < \cfrac{1 + 2 + 3 + \cdots + 10}{10} \times \cfrac{1 + 2 + 3 + \cdots + 10}{10} \\ \implies \sqrt[9]{9!} < \sqrt[10]{(10!)}

Let f ( x ) = Γ ( x + 1 ) 1 x f(x)=\Gamma(x+1)^\frac{1}{x}

By calculus, we can show that f ( x ) > 0 f'(x)>0 for all positive x.

So f ( 10 ) > f ( 9 ) f(10)>f(9)

The actual calculation for finding f ( x ) f'(x) which I did was pretty long (using digamma) so i have omitted it. If someone can find a small way of showing that the function always increases, feel free to mention it here in the comments or a new solution.

Ajinkya Shivashankar - 4 years, 5 months ago
Kushal Bose
Jan 8, 2017

First conisder x = ( 9 ! ) 10 x=(9!)^{10} and y = ( 9 ! ) 10 y=(9!)^{10}

x = ( 9 ! ) 10 = 9 ! 9 . 9 ! x=(9!)^{10}=9!^9.9! and y = ( 10 ! ) 9 = 9 ! 9 . 1 0 9 y=(10!)^9=9!^9.10^9

9 ! = 1 × 2 × × 9 9!=1 \times 2 \times \cdots \times 9

1 0 9 = 10 × 10 × × 10 10^9=10 \times 10 \times \cdots \times 10

Obviously , 9 ! < 1 0 9 9! <10^9 .So 9 ! 9 . 9 ! < 9 ! 9 . 1 0 9 x < y ( 9 ! ) 10 < ( 10 ! ) 9 9 ! 9 < 10 ! 9 9!^9.9! < 9!^9.10^9 \implies x <y \implies (9!)^{10} <(10!)^{9} \implies \sqrt[9]{9!} <\sqrt[9]{10!}

J Yoest
Feb 6, 2017

This is NOT a mathematically rigorous solution, but you can use a rough approximation of Stirling's formula...

n! ~ n^n --> (n!)^(1/n) ~ n

Since this increases with n, we'd expect by this heuristic that (10!)^1/10 > (9!)^(1/9)

The lack of rigor comes from (1) not using the full Stirling's approximation (I ignored the exponential factor, the radical factor, and the constants), and more importantly (2) Stirling's only holds in the limit as n --> infty, so there's no guarantee that it will even be close to accurate for small n. But this method is a 'quick and dirty' way to get the correct answer to this problem.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...