Roots of Unity

Algebra Level 5

Let ω \omega be a complex number that is not a real number such that ω 8 = 1 \omega^8 = 1 . Evaluate 1 3 k = 1 2016 ω 6 k 4 + ω 5 k 4 + ω 4 k 4 + ω 3 k 4 + ω 2 k 4 + ω k 4 + 1 ω 6 k 4 ω 5 k 4 + ω 4 k 4 ω 3 k 4 + ω 2 k 4 ω k 4 + 1 . \large \dfrac{1}{3} \sum_{k = 1}^{2016} \dfrac{\omega^{6k^{4}} + \omega^{5k^{4}} + \omega^{4k^{4}} + \omega^{3k^{4}} + \omega^{2k^{4}} + \omega^{k^{4}} + 1}{\omega^{6k^{4}} - \omega^{5k^{4}} + \omega^{4k^{4}} - \omega^{3k^{4}} + \omega^{2k^{4}} - \omega^{k^{4}} + 1} .


The answer is 2016.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Daniel Stewart
Aug 1, 2016

Simplify the summand to ω 7 k 4 1 ω 7 k 4 + 1 ω k 4 + 1 ω k 4 1 \frac{\omega^{7k^{4}} - 1}{\omega^{7k^{4}} + 1}\cdot \frac{\omega^{k^{4}} + 1}{\omega^{k^{4}} - 1} . Note that k 4 0 k^{4} \equiv 0 or 1 ( m o d 8 ) 1 \pmod{8} . If k k is odd, the expression is equal to 1 ω 1 1 ω + 1 ω + 1 ω 1 = 1 \frac{\frac{1}{\omega} - 1}{\frac{1}{\omega} + 1} \cdot \frac{\omega + 1}{\omega - 1} = -1 . If k k is even, the expression is equal to 7 7 . Thus the answer is 1 3 ( 1008 7 1008 ) = 1 3 ( 1008 ) ( 6 ) = 2 ( 1008 ) = 2016 . \frac{1}{3}(1008\cdot 7 - 1008) =\frac{1}{3}(1008)(6) = 2(1008) = \boxed{2016}. Please tell me if there are any errors.

If ω = 1 \omega = -1 , then for k = 1 k = 1 , ω 6 k 4 + ω 5 k 4 + ω 4 k 4 + ω 3 k 4 + ω 2 k 4 + ω k 4 + 1 ω 6 k 4 ω 5 k 4 + ω 4 k 4 ω 3 k 4 + ω 2 k 4 ω k 4 + 1 = ( 1 ) 6 + ( 1 ) 5 + ( 1 ) 4 + ( 1 ) 3 + ( 1 ) 2 + ( 1 ) + 1 ( 1 ) 6 ( 1 ) 5 + ( 1 ) 4 ( 1 ) 3 + ( 1 ) 2 ( 1 ) + 1 = 1 7 . \begin{aligned} &\frac{\omega^{6k^4} + \omega^{5k^4} + \omega^{4k^4} + \omega^{3k^4} + \omega^{2k^4} + \omega^{k^4} + 1}{\omega^{6k^4} - \omega^{5k^4} + \omega^{4k^4} - \omega^{3k^4} + \omega^{2k^4} - \omega^{k^4} + 1} \\ &= \frac{(-1)^6 + (-1)^5 + (-1)^4 + (-1)^3 + (-1)^2 + (-1) + 1}{(-1)^6 - (-1)^5 + (-1)^4 - (-1)^3 + (-1)^2 - (-1) + 1} \\ &= \frac{1}{7}. \end{aligned}

Jon Haussmann - 4 years, 10 months ago

Log in to reply

Thanks, edited the problem.

Daniel Stewart - 4 years, 10 months ago

I was surprised that it worked for ω \omega being a fourth root of unity as well; I thought when you wrote ω 8 = 1 \omega^8 = 1 , you intended that it worked for an eighth root of unity only and not a fourth root as well.

Ivan Koswara - 4 years, 10 months ago

Log in to reply

Yeah, I just didn't want people to plug in i i , and i -i , and getting an answer.

Daniel Stewart - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...