Roots squared

Algebra Level 3

2 x 2 3 x + 9 = 0 \large 2x^2-3x+9=0

Given that x 1 x_1 and x 2 x_2 are the roots of the equation above. Find x 1 2 + x 2 2 x_1^2+x_2^2 .

27 4 - \frac {27}4 3 2 \frac 32 9 4 \frac 94 9 2 \frac 92

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

By Vieta's formula , x 1 + x 2 = 3 2 x_{1} + x_{2} = \dfrac{3}{2} and x 1 x 2 = 9 2 x_{1}x_{2} = \dfrac{9}{2} .

Thus x 1 2 + x 2 2 = ( x 1 + x 2 ) 2 2 x 1 x 2 = ( 3 2 ) 2 2 × 9 2 = 27 4 x_{1}^{2} + x_{2}^{2} = (x_{1} + x_{2})^{2} - 2x_{1}x_{2} = \left(\dfrac{3}{2}\right)^{2} - 2 \times \dfrac{9}{2} = \boxed{-\dfrac{27}{4}} .

Munem Shahriar
Apr 25, 2018

2 x 2 3 x + 9 = 0 \large 2x^2-3x+9=0

By the quadratic equation formula , we get x 1 = 3 + i 63 4 x_1 = \dfrac {3 + i\sqrt{63}}4 and x 2 = 3 i 63 4 x_2 = \dfrac{3 - i \sqrt{63}}4 .

x 1 2 + x 2 2 = ( 3 + i 63 4 ) 2 + ( 3 i 63 4 ) 2 = ( 3 + i 63 ) 2 4 2 + ( 3 i 63 ) 2 4 2 = 3 2 + 2 3 i 63 + ( i 63 ) 2 16 + 3 2 2 3 i 63 + ( i 63 ) 2 16 = 9 + 6 i 63 63 + 9 6 i 63 63 16 [ i 2 = 1 ] = 108 16 = 27 4 . \begin{aligned} x_1^2 + x_2^2 & = \left(\dfrac{3 +i\sqrt{63}}4\right)^2 + \left( \dfrac{3 - i \sqrt{63}}4 \right)^2 \\ & = \dfrac{\left(3 + i\sqrt{63} \right)^2}{4^2} + \dfrac{(3- i\sqrt{63})^2}{4^2} \\ & = \dfrac{3^2 + 2 \cdot 3i\sqrt{63} +(i\sqrt{63})^2 }{16} + \dfrac{3^2 - 2 \cdot 3i\sqrt{63} + (i\sqrt{63})^2}{16} \\ & = \dfrac{9 + 6i\sqrt{63} - 63 + 9- 6i\sqrt{63} - 63}{16} &[i^2 = -1] \\ & = \dfrac{-108}{16} \\ & = \dfrac{-27}4. \\ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...