Rotating links

Rod AB is rotating with an angular velocity of ω A B = 60 \omega_{AB}= 60 rad/s. Determine the magnitude of angular velocity , ω C / B \omega_{C/B} of the rod BC at the instant θ \theta = 60° and ϕ \phi = 45°.

Hint: slider C is restricted to have only vertical motion

Round the answer to the lowest integer(floor).

Notation: ω C / B \omega_{C/B} is the relative angular velocity of the rigid body BC with respect to point B


The answer is 21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Karan Chatrath
Sep 28, 2019

Let an inertial coordinate system be placed at point A (A is the origin) with the x-axis pointing rightward horizontal and y-axis pointing vertically up. Let A B = L 1 AB = L_1 and B C = L 2 BC = L_2 . Looking at the X-coordinate of point C C

we have:

x c = L 1 sin θ L 2 sin ϕ x_c = -L_1\sin{\theta} - L_2\sin{\phi}

Since the motion at point C is constrained by a translational joint, the x-coordinate of point C remains constant throughout, and therefore:

x ˙ c = 0 = L 1 cos θ θ ˙ L 1 cos ϕ ϕ ˙ \dot{x}_c = 0 = -L_1\cos{\theta}\dot{\theta} -L_1\cos{\phi}\dot{\phi}

Solving yields:

ϕ ˙ = L 1 L 2 cos θ cos ϕ θ ˙ = 15 2 \dot{\phi} = -\frac{L_1}{L_2}\frac{\cos{\theta}}{\cos{\phi}}\dot{\theta} = -15\sqrt{2}

Now at this stage, I have a reservation about the problem statement. The problem asks for the angular velocity which should be inclusive of a sign. This is because the sign is indicative of whether the rotation is clockwise or anticlockwise. Yet the answer is a positive number. I got my initial attempt wrong due to this. I request that the problem statement be updated to asking for the floor of the magnitude of angular velocity .

Steven Chase
Sep 27, 2019

Coordinates and velocity of point B B , assuming that point A A is at the origin:

x B = L A B sin θ y B = L A B cos θ x ˙ B = L A B cos θ θ ˙ y ˙ B = L A B sin θ θ ˙ x_B = -L_{AB} \, \sin \theta \\ y_B = L_{AB} \, \cos \theta \\ \dot{x}_B = -L_{AB} \, \cos \theta \, \dot{\theta} \\ \dot{y}_B =- L_{AB} \, \sin \theta \, \dot{\theta}

Coordinates and velocity of point C C :

x C = x B L B C sin ϕ y C = y B L B C cos θ x ˙ C = L A B cos θ θ ˙ L B C cos ϕ ϕ ˙ y ˙ C = L A B sin θ θ ˙ + L B C sin ϕ ϕ ˙ x_C = x_B - L_{BC} \, \sin \phi \\ y_C = y_B - L_{BC} \, \cos \theta \\ \dot{x}_C = -L_{AB} \, \cos \theta \, \dot{\theta} - L_{BC} \, \cos \phi \, \dot{\phi} \\ \dot{y}_C = -L_{AB} \, \sin \theta \, \dot{\theta} + L_{BC} \, \sin \phi \, \dot{\phi}

We know that x ˙ C = 0 \dot{x}_C = 0

x ˙ C = L A B cos θ θ ˙ L B C cos ϕ ϕ ˙ = 0 ϕ ˙ = L A B cos θ θ ˙ L B C cos ϕ \dot{x}_C = -L_{AB} \, \cos \theta \, \dot{\theta} - L_{BC} \, \cos \phi \, \dot{\phi} = 0 \\ \dot{\phi} = \frac{L_{AB} \, \cos \theta \, \dot{\theta}}{- L_{BC} \, \cos \phi}

Plugging in numbers yields:

ϕ ˙ = 15 2 21.213 |\dot{\phi}| = 15 \sqrt{2} \approx 21.213

Amal Hari
Sep 27, 2019

Rotation About Fixed Axis. For link AB

V B = ω A B × r A B V_{B} = \boldsymbol{\omega}_{AB} \times \textbf{r}_{AB}

= ( 60 k ) × ( 0.3 sin 60 ° i + 0.3 cos 60 ° j ) (60\textbf{k}) \times (-0.3 \sin 60°\textbf{i} + 0.3 \cos 60°\textbf{j})

={ 9 i 9 3 j -9\textbf{i} - 9\sqrt{3}\textbf{j} } m/s

General Plane Motion for rod BC ,so use the relative velocity equation:

V C = V B + ω C / B × r C / B \textbf{V}_{C} = \textbf{V}_{B} + \boldsymbol{\omega}_{C/B} \times \textbf{r}_{C/B}

v C j = ( 9 i 9 3 j ) + ( ω C / B k ) × ( 0.6 sin 45 ° i 0.6 cos 45 ° j ) -v_{C} \textbf{j} = (-9\textbf{i} - 9\sqrt{3} \textbf{j} ) + (\omega_{C/B} \textbf{k}) \times (-0.6 \sin 45°\textbf{i} - 0.6 \cos 45°\textbf{j})

v C j = ( 0.3 2 ω C / B 9 ) i + ( 0.3 2 ω C / B 9 3 ) j -v_{C} \textbf{j} = (0.3\sqrt{2} \omega_{C/B} - 9)\textbf{i} + ( -0.3\sqrt{2}\omega_{C/B} - 9\sqrt{3})\textbf{j}

Equating i components,

( 0.3 2 ω C / B 9 ) = 0 (0.3\sqrt{2} \omega_{C/B} - 9)=0

ω C / B = 21.2 r a d / s \omega_{C/B} =21.2 rad/s

round down to 21 rad/s

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...