Rotating the graph

Calculus Level 2

We have a function f ( x ) = x 2 ; 3 x 14 f(x) = x^2;\quad 3 \le x\le 14
V V is the volume of the object we get by rotating it's graph by the x x -axis.

If V = π × n V = \pi \times n what is n n equal to?


The answer is 107516.2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Michal Pecho
Mar 23, 2019

V = 3 14 π y 2 d x = 3 14 π x 4 d x = 14 5 π 5 3 5 π 5 V=\int _{ 3 }^{ 14 }{ \pi { y }^{ 2 } } dx = \int _{ 3 }^{ 14 }{ \pi { x }^{ 4 } } dx = \frac { { 14 }^{ 5 }\pi }{ 5 } -\frac { { 3 }^{ 5 }\pi }{ 5 }

V = π × n π × n = 14 5 π 5 3 5 π 5 V=\pi \times n \Rightarrow \pi \times n=\frac { { 14 }^{ 5 }\pi }{ 5 } -\frac { { 3 }^{ 5 }\pi }{ 5 }

π × n = π ( 14 5 5 3 5 5 ) \pi \times n=\pi \left( \frac { { 14 }^{ 5 } }{ 5 } -\frac { { 3 }^{ 5 } }{ 5 } \right)

n = 14 5 5 3 5 5 n=\frac { { 14 }^{ 5 } }{ 5 } -\frac { { 3 }^{ 5 } }{ 5 }

n = 107516.2 n=107516.2

thiz boii iz rilly ztupid

Ban anán - 2 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...