Two points A ( 1 , 0 ) , B ( − 2 , − 3 ) undergo a rotation in the x y plane about an unknown point in the plane, and through an unknown angle of rotation. However, we know their images under this rotation. The images are, A ′ ( − 2 , 3 ) , B ′ ( 1 , 6 ) . Find the image of the point C ( 4 , 5 ) under the same rotation. If the image is C ′ ( x , y ) then enter the sum x + y .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The overall transformation matrix is
M = T − 1 R T , where T = ⎝ ⎛ 1 0 0 0 1 0 − x 1 − y 1 1 ⎠ ⎞
is the translation matrix, T − 1 is it's inverse, and
R = ⎝ ⎛ cos θ − sin θ 0 sin θ cos θ 0 0 0 1 ⎠ ⎞
is the matrix of rotation.
Using this and the transformation equation
X ′ = M X where X ′ = ⎝ ⎛ x y 1 ⎠ ⎞ , X = ⎝ ⎛ 4 5 1 ⎠ ⎞
we get
M = ⎝ ⎛ − 1 0 0 0 − 1 0 − 1 3 1 ⎠ ⎞ ,
and X ′ = ⎝ ⎛ − 5 − 2 1 ⎠ ⎞
So, x = − 5 , y = − 2 , x + y = − 7 .
Let D = A − A B = ( 4 , 3 ) then D ′ = A ′ − A ′ B ′ = ( − 5 , 0 )
Let F = A − 3 5 A B = ( 6 , 5 ) then F ′ = A ′ − 3 5 A ′ B ′ = ( − 7 , − 2 )
As C ′ D ′ = C D so ( x + 5 ) 2 + y 2 = ( 4 − 4 ) 2 + ( 5 − 3 ) 2 = 4
As C ′ F ′ = C F so ( x + 7 ) 2 + ( y + 2 ) 2 = ( 4 − 6 ) 2 + ( 5 − 5 ) 2 = 4
After subtracting this equation we get 2 ( 2 x + 1 2 ) + 2 ( 2 y + 2 ) = 0 ⇒ 4 ( x + y + 7 ) = 0 ⇒ x + y = − 7
Problem Loading...
Note Loading...
Set Loading...
A rotation of a point ( x , y ) about a point ( h , k ) by an angle θ to a new point ( x ′ , y ′ ) is given by:
x ′ = ( x − h ) cos θ + ( y − k ) sin θ + h
y ′ = − ( x − h ) sin θ + ( y − k ) cos θ + k
If A ( 1 , 0 ) rotates to A ′ ( − 2 , 3 ) , then:
− 2 = ( 1 − h ) cos θ + ( 0 − k ) sin θ + h
3 = − ( 1 − h ) sin θ + ( 0 − k ) cos θ + k
And if B ( − 2 , − 3 ) rotates to B ′ ( 1 , 6 ) , then:
1 = ( − 2 − h ) cos θ + ( − 3 − k ) sin θ + h
6 = − ( − 2 − h ) sin θ + ( − 3 − k ) cos θ + k
These four equations solve to h = − 2 1 , k = 2 3 , cos θ = − 1 , and sin θ = 0 , so that this particular rotation is given by:
x ′ = ( x + 2 1 ) ( − 1 ) + ( y − 2 3 ) ( 0 ) − 2 1 = − x − 1
y ′ = − ( x + 2 1 ) ( 0 ) + ( y − 2 3 ) ( − 1 ) + 2 3 = − y + 3
Therefore, C ( 4 , 5 ) will rotate to:
x ′ = − x − 1 = − 4 − 1 = − 5
y ′ = − y + 3 = − 5 + 3 = − 2
in other words, to C ′ ( − 5 , − 2 ) . Therefore, x = − 5 , y = − 2 , and x + y = − 7 .