Round and Round

A ball that weights 5N is connected to an elastic rope. Originally the rope is of length 13 cm. when the ball is added. the rope rests in equilibrium at length 14.8 cm. The ball is now made to spin in a vertical circular path. When the ball is turned a 180 degrees through the circle. The length of the rope is again 13 cm. As the ball continues rotating a full 360 degrees and return to its original starting point, if the length of the rope at that point in metres is a b \frac { a }{ b } where a and b are co prime then what is the value of a + b a+ b ?

Take g as 9.81


The answer is 3281.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Farouk Yasser
Oct 24, 2014

When the object is at the beginning at equilibrium. The tension force in the spring is equal to the weight of the object. Therefore:

T e n s i o n = W e i g h t T e n s i o n = S p r i n g C o n s t a n t × E x t e n s i o n W e i g h t = S p r i n g C o n s t a n t × E x t e n s i o n 5 = K × 14.8 13 100 K = 2500 9 ( k e e p a s i s ) Tension\quad =\quad Weight\\ \\ Tension\quad =\quad Spring\quad Constant\quad \times \quad Extension\\ \\ Weight\quad =\quad Spring\quad Constant\quad \times \quad Extension\\ \\ 5\quad =\quad K\quad \times \quad \frac { 14.8-13 }{ 100 } \\ \\ K\quad =\quad \frac { 2500 }{ 9 } \quad (keep\quad as\quad is)\\ \\

Now when the object has rotates 180 degrees, the length is again 13 cm. Which means there is no extension and since Tension = KX where X is the extension (which is zero) then the tension here is zero. The only force acting on the object is its weight perpendicularly downward. So by setting an equation using F = ma we get:

F o r c e R e s u l t a n t = C e n t r i p e t a l F o r c e F o r c e r e s u l t a n t = W e i g h t W e i g h t = C e n t r i p e t a l f o r c e C e n t r i p e t a l f o r c e = M a s s × ( A n g u l a r m o m e n t u m ) 2 × R a d i u s W e i g h t = M a s s × ( A n g u l a r m o m e n t u m ) 2 × R a d i u s 5 = 5 9.81 × ω 2 × 13 100 ω 2 = 981 13 ( k e e p a s i s ) Force\quad Resultant\quad =\quad Centripetal\quad Force\\ \\ Force\quad resultant\quad =\quad Weight\\ \\ Weight\quad =\quad Centripetal\quad force\\ \\ Centripetal\quad force\quad \quad =\quad Mass\quad \times \quad (Angular\quad momentum)^{ 2 }\quad \times \quad Radius\\ \\ Weight\quad =\quad Mass\quad \times \quad (Angular\quad momentum)^{ 2 }\quad \times \quad Radius\\ \\ 5\quad =\quad \frac { 5 }{ 9.81 } \quad \times \quad \omega ^{ 2 }\quad \times \quad \frac { 13 }{ 100 } \\ \\ \omega ^{ 2 }\quad =\quad \frac { 981 }{ 13 } \quad (keep\quad as\quad is)

Next when the object is finally at the bottom (after 360 degrees), let us call its length (L). by setting again another formula we get:

E x t e n s i o n = L 13 100 S p r i n g c o n s t a n t = K = 2500 9 ( d e r i v e d e a r l i e r ) ( A n g u l a r v e l o c i t y ) 2 = ω 2 = 981 13 T e n s i o n F o r c e W e i g h t F o r c e = C e n t r i p e t a l F o r c e T W = F c T = K x = K ( L 13 100 ) W = 5 N F c = M a s s × ω 2 × R a d i u s W r i t i n g t h i s a g a i n w e g e t : T W = F c K ( L 13 100 ) 5 = M a s s × ω 2 × R a d i u s 2500 9 ( L 13 100 ) 5 = 5 9.81 × 981 13 × L 28000 117 L = 370 9 L = 481 2800 a = 481 , b = 2800 a + b = 3281 A n s w e r = 3281 Extension\quad =\quad L\quad -\quad \frac { 13 }{ 100 } \\ \\ Spring\quad constant\quad =\quad K\quad =\quad \frac { 2500 }{ 9 } \quad (derived\quad earlier)\\ \\ (Angular\quad velocity)^{ 2 }\quad =\quad \omega ^{ 2 }\quad =\quad \frac { 981 }{ 13 } \\ \\ Tension\quad Force\quad -\quad Weight\quad Force\quad =\quad Centripetal\quad Force\\ \\ T\quad -\quad W\quad =\quad F_{ c }\\ \\ T\quad =\quad Kx\quad =\quad K(L\quad -\quad \frac { 13 }{ 100 } )\\ \\ W\quad =\quad 5N\\ \\ F_{ c }\quad =\quad Mass\quad \times \quad \omega ^{ 2 }\quad \times \quad Radius\\ \\ Writing\quad this\quad again\quad we\quad get:\\ \\ T\quad -\quad W\quad =\quad F_{ c }\\ \\ K(L\quad -\quad \frac { 13 }{ 100 } )\quad \quad -\quad \quad 5\quad \quad =\quad \quad Mass\quad \times \quad \omega ^{ 2 }\quad \times \quad Radius\\ \\ \frac { 2500 }{ 9 } (L\quad -\quad \frac { 13 }{ 100 } )\quad \quad -\quad \quad 5\quad \quad =\quad \quad \frac { 5 }{ 9.81 } \quad \times \quad \frac { 981 }{ 13 } \quad \times \quad L\\ \\ \frac { 28000 }{ 117 } L\quad =\quad \frac { 370 }{ 9 } \\ \\ L\quad =\quad \frac { 481 }{ 2800 } \\ \\ a\quad =\quad 481,\quad b\quad =\quad 2800\\ \\ a\quad +\quad b\quad =\quad 3281\\ \\ Answer\quad =\quad 3281\\ \\

The answer is 3281

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...