A man runs a 100 meter race. He starts at a speed of 6m/s, accelerates uniformly for 2 seconds to his top speed and remains constant for the rest of the race. He covers the whole distance of 100 meters in 11 seconds. Calculate his top speed
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
G i v e n d i s t a n c e o f w h o l e j o u r n e y = 1 0 0 m a n d t o t a l t i m e = 1 1 s .
F i r s t c a s e : a c c e l e r a t e d m o t i o n w h e r e i n i t i a l v e l o c i t y ( u ) = 6 m / s , a c c e l e r a t i o n ( a ) = 2 m / s 2 . L e t t h e f i n a l v e l o c i t y b e ∗ v ∗ m / s a n d t i m e t a k e n b e ∗ x ∗ s .
S e c o n d c a s e : u n i f o r m m o t i o n w h e r e t h e c o n s t a n t v e l o c i t y = ∗ v ∗ a n d t i m e t a k e n i s ∗ ( 1 1 − x ) ∗ .
A p p l y i n g f i r s t e q o f m o t i o n i n F i r s t c a s e : v = u + a t
→ v = 6 + 2 x
A p p l y i n g s e c o n d e q o f m o t i o n i n F i r s t c a s e : s = u t + 2 1 a t 2
→ S 1 = 6 x + x 2
→ S 2 = v ( 1 1 − x ) = ( 6 + 2 x ) ( 1 1 − x )
H e r e , S 1 a n d S 2 a r e t h e d i s t a n c e s t r a v e l l e d i n f i r s t a n d s e c o n d c a s e s r e s p e c t i v e l y
→ S 1 + S 2 = 1 0 0
→ 6 x + x 2 + ( 6 + 2 x ) ( 1 1 − x ) = 1 0 0
S o l v i n g f o r x , w e g e t x = ( 1 1 + 8 7 ) , ( 1 1 − 8 7 )
A s t o t a l t i m e = 1 1 s ∴ x c a n n o t b e g r e a t e r t h a n 1 1 ∴ x = 1 1 − 8 7
V m a x = ∗ v ∗ = 6 + 2 x
⇒ V m a x = 9 . 3 4 6 ∼ 9 . 4 m / s
Problem Loading...
Note Loading...
Set Loading...
There are two distances covered Let X1 be the distance covered in 2 seconds And X2 be the distance covered in the 9 seconds left . X1=2a + 12 ; X2=9V But X1 + X2 = 100 =>2a + 12 +9V = 100 But a= (v-u)/t= (V-6)/2 => 2(V-6)/2 + 12 + 9V = 100 =>V-6+12+9V= 100 =>10V+6=100 =>10V=94 =>V=9.4 m/s