Top speed

A man runs a 100 meter race. He starts at a speed of 6m/s, accelerates uniformly for 2 seconds to his top speed and remains constant for the rest of the race. He covers the whole distance of 100 meters in 11 seconds. Calculate his top speed


The answer is 9.4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Maroun Wakim
Mar 16, 2017

There are two distances covered Let X1 be the distance covered in 2 seconds And X2 be the distance covered in the 9 seconds left . X1=2a + 12 ; X2=9V But X1 + X2 = 100 =>2a + 12 +9V = 100 But a= (v-u)/t= (V-6)/2 => 2(V-6)/2 + 12 + 9V = 100 =>V-6+12+9V= 100 =>10V+6=100 =>10V=94 =>V=9.4 m/s

Toshit Jain
Mar 15, 2017

G i v e n d i s t a n c e o f w h o l e j o u r n e y = 100 m a n d t o t a l t i m e = 11 s . Given \space distance \space of \space whole \space journey \space =\space 100 \space m \space and \space total \space time \space=\space 11 \space s.

F i r s t c a s e : a c c e l e r a t e d m o t i o n w h e r e i n i t i a l v e l o c i t y ( u ) = 6 m / s , a c c e l e r a t i o n ( a ) = 2 m / s 2 . L e t t h e f i n a l v e l o c i t y b e v m / s a n d t i m e t a k e n b e x s . First \space case \space : \space accelerated \space motion \space where \space initial \space velocity \space(u) \space =\space 6 \space m/s \space , \space acceleration \space(a)\space =\space 2 \space m/s^{2}. \space Let \space the \space final \space velocity \space be \space *v* \space m/s \space and \space time \space taken \space be \space *x* \space s.

S e c o n d c a s e : u n i f o r m m o t i o n w h e r e t h e c o n s t a n t v e l o c i t y = v a n d t i m e t a k e n i s ( 11 x ) . Second \space case \space:\space uniform \space motion \space where \space the \space constant \space velocity \space =\space *v* \space and \space time \space taken \space is \space *(11-x)*.

A p p l y i n g f i r s t e q o f m o t i o n i n F i r s t c a s e : v = u + a t Applying \space first \space eq \space of \space motion \space in \space First \space case \space: v \space = \space u \space + \space at

v = 6 + 2 x \rightarrow \space v \space=\space 6 \space+\space 2x

A p p l y i n g s e c o n d e q o f m o t i o n i n F i r s t c a s e : s = u t + 1 2 a t 2 Applying \space second \space eq \space of \space motion \space in \space First \space case \space: s \space=\space u t \space+ \space \frac{1}{2}\space a t ^{2}

S 1 = 6 x + x 2 \rightarrow S_{1} \space=\space 6x \space + \space x^{2}

S 2 = v ( 11 x ) = ( 6 + 2 x ) ( 11 x ) \rightarrow \space S_{2} \space =\space v\space(11-x) \space = \space (6\space + \space 2x)(11 \space - \space x)

H e r e , S 1 a n d S 2 a r e t h e d i s t a n c e s t r a v e l l e d i n f i r s t a n d s e c o n d c a s e s r e s p e c t i v e l y Here \space,\space S_{1} \space and \space S_{2} \space are \space the \space distances \space travelled \space in \space first \space and \space second \space cases \space respectively

S 1 + S 2 = 100 \rightarrow \space S_{1} \space + \space S_{2} \space = \space 100

6 x + x 2 + ( 6 + 2 x ) ( 11 x ) = 100 \rightarrow \space 6x \space+ \space x^{2} \space + \space (6 \space+\space 2x)(11 \space-\space x) \space = \space 100

S o l v i n g f o r x , w e g e t x = ( 11 + 87 ) , ( 11 87 ) Solving \space for \space x \space , \space we \space get \space x \space=\space (11 \space + \space \sqrt{87} )\space,\space (11\space - \space \sqrt{87})

A s t o t a l t i m e = 11 s x c a n n o t b e g r e a t e r t h a n 11 x = 11 87 As \space total \space time \space = \space 11 \space s \space \therefore \space x \space cannot \space be \space greater \space than \space 11 \space \therefore \boxed{x \space = \space 11 \space - \space \sqrt{87}}

V m a x = v = 6 + 2 x V_{max} \space = \space *v* \space=\space 6 \space + \space 2x

V m a x = 9.346 9.4 m / s \Rightarrow \space V_{max} \space=\space 9.346\space \sim \space 9.4 \space m/s

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...