Rules of calculus

Calculus Level 5

I = 0 π 2 sin ( 2018 x ) ( sin x ) 2016 d x \large I = \int_{0}^{\frac{\pi}{2}} \sin(2018x)(\sin x )^{2016} dx

Find I 1 I^{-1} .


The answer is 2017.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Andre Bourque
Jun 23, 2018

By the sine addition formula, the integrand becomes

I = 0 π 2 sin ( 2017 x ) cos ( x ) sin 2016 ( x ) + cos ( 2017 x ) sin 2017 ( x ) d x \large I = \int_{0}^{\frac{\pi}{2}} \sin(2017x) \cos(x) \sin^{2016}(x) + \cos(2017x) \sin^{2017}(x) dx

By observation, we can use the inverse product rule on this to get

I = sin ( 2017 x ) sin 2017 ( x ) 2017 \large I = \dfrac{\sin(2017x) \sin^{2017} (x)}{2017} , so upon evaluating the limits we get I = 1 2017 I = \frac{1}{2017} .

Brian Moehring
Jun 24, 2018

Here's another solution. While I think it's interesting in its own right, it's much more complicated than the others' solutions, so tread carefully!


First, we use sin ( u ) = e u i e u i 2 i \sin(u) = \frac{e^{ui}-e^{-ui}}{2i} along with the binomial theorem to expand the integrand sin ( 2018 x ) ( sin x ) 2016 = ( e 2018 x i e 2018 x i 2 i ) ( e x i e x i 2 i ) 2016 = 1 2 2016 ( 2 i ) ( e 2018 x i ( e x i e x i ) 2016 e 2018 x i ( e x i e x i ) 2016 ) = 1 2 2016 ( 2 i ) ( ( e 2018 x i k = 0 2016 ( 2016 k ) ( e x i ) k ( e x i ) 2016 k ) ( e 2018 x i k = 0 2016 ( 2016 k ) ( e x i ) 2016 k ( e x i ) k ) ) = 1 2 2016 k = 0 2016 ( 2016 k ) ( 1 ) k e ( 2 k + 2 ) x i e ( 2 k + 2 ) x i 2 i = 1 2 2016 k = 0 2016 ( 2016 k ) ( 1 ) k sin ( ( 2 k + 2 ) x ) \begin{aligned}\sin(2018x)\left(\sin x\right)^{2016} &= \left(\frac{e^{2018xi}-e^{-2018xi}}{2i}\right)\left(\frac{e^{xi}-e^{-xi}}{2i}\right)^{2016} \\ &= \frac{1}{2^{2016}\cdot(2i)} \left(e^{2018xi}\left(e^{xi}-e^{-xi}\right)^{2016} - e^{-2018xi}\left(e^{xi}-e^{-xi}\right)^{2016}\right) \\ &= \frac{1}{2^{2016}\cdot(2i)} \left(\left(e^{2018xi}\sum_{k=0}^{2016}\binom{2016}{k}\left(e^{xi}\right)^k\left(-e^{-xi}\right)^{2016-k}\right) - \left(e^{-2018xi}\sum_{k=0}^{2016}\binom{2016}{k}\left(e^{xi}\right)^{2016-k}\left(-e^{-xi}\right)^k\right)\right) \\ &= \frac{1}{2^{2016}} \sum_{k=0}^{2016} \binom{2016}{k} (-1)^k \frac{e^{(2k+2)xi}-e^{-(2k+2)xi}}{2i} \\ &= \frac{1}{2^{2016}} \sum_{k=0}^{2016} \binom{2016}{k} (-1)^k \sin((2k+2)x) \end{aligned}

Now we integrate from x = 0 x=0 to x = π / 2 x=\pi/2 to find I = 1 2 2016 k = 0 2016 ( 2016 k ) ( 1 ) k 0 π / 2 sin ( ( 2 k + 2 ) x ) d x = 1 2 2016 k = 0 2016 ( 2016 k ) ( 1 ) k ( 1 2 k + 2 ( cos ( ( k + 1 ) π ) + cos ( 0 ) ) ) = 1 2 2016 k = 0 2016 ( 2016 k ) ( 1 ) k 1 ( 1 ) k + 1 2 k + 2 = 1 2 2016 k = 0 1008 ( 2016 2 k ) 1 2 k + 1 \begin{aligned} I &= \frac{1}{2^{2016}} \sum_{k=0}^{2016} \binom{2016}{k} (-1)^k \int_0^{\pi/2} \sin((2k+2)x) \, dx \\ &= \frac{1}{2^{2016}} \sum_{k=0}^{2016} \binom{2016}{k} (-1)^k \left(\frac{1}{2k+2}(-\cos((k+1)\pi) + \cos(0))\right) \\ &= \frac{1}{2^{2016}} \sum_{k=0}^{2016} \binom{2016}{k} (-1)^k \cdot \frac{1 - (-1)^{k+1}}{2k+2} \\ &= \frac{1}{2^{2016}} \sum_{k=0}^{1008} \binom{2016}{2k} \frac{1}{2k+1}\end{aligned}

Now, to evaluate this last expression, we consider the following identity from the binomial theorem: ( 1 + x ) 2016 = k = 0 2016 ( 2016 k ) x k . (1+x)^{2016} = \sum_{k=0}^{2016}\binom{2016}{k} x^k. Now, that's similar but not the same as the sum we want. We only want even values of k k in the binomial coefficient, which means we only want to take the terms where x x has an even exponent. To do this, we take the even part: 1 2 ( ( 1 + x ) 2016 + ( 1 x ) 2016 ) = k = 0 1008 ( 2016 2 k ) x 2 k \frac{1}{2}\left((1+x)^{2016} + (1-x)^{2016}\right) = \sum_{k=0}^{1008} \binom{2016}{2k} x^{2k} Finally, since 0 1 x 2 k d x = 1 2 k + 1 \int_0^1 x^{2k}\,dx = \frac{1}{2k+1} , apply this integral to both sides to find 1 2 ( 2017 ) ( ( 1 + x ) 2017 ( 1 x ) 2017 0 1 = k = 0 1008 ( 2016 2 k ) 1 2 k + 1 2 2016 2017 = k = 0 1008 ( 2016 2 k ) 1 2 k + 1 \frac{1}{2(2017)}\left((1+x)^{2017} - (1-x)^{2017}\right|_0^1 = \sum_{k=0}^{1008} \binom{2016}{2k}\frac{1}{2k+1} \\ \frac{2^{2016}}{2017} = \sum_{k=0}^{1008} \binom{2016}{2k}\frac{1}{2k+1}

Using this in the equation for I I , we finally find I = 1 2 2016 2 2016 2017 = 1 2017 I = \frac{1}{2^{2016}} \cdot \frac{2^{2016}}{2017} = \frac{1}{2017} and therefore I 1 = 2017 \boxed{I^{-1} = 2017}

<phew!>

Awesome! You're brave for trying whatever comes to mind. If it works it works!

Andre Bourque - 2 years, 11 months ago
Chew-Seong Cheong
Jun 24, 2018

Similar solution with @Andre Bourque 's

I = 0 π 2 sin ( 2018 x ) sin 2016 x d x By sin ( A + B ) = sin A cos B + cos A sin B = 0 π 2 ( sin ( 2017 x ) cos x + cos ( 2017 x ) sin x ) sin 2016 x d x = 0 π 2 ( sin ( 2017 x ) cos x sin 2016 x + cos ( 2017 x ) sin 2017 x ) d x See note = sin ( 2017 x ) sin 2017 x 2017 0 π 2 = 1 2017 \begin{aligned} I & = \int_0^\frac \pi 2 {\color{#3D99F6}\sin(2018x)}\sin^{2016}x \ dx & \small \color{#3D99F6} \text{By }\sin (A+B) = \sin A \cos B + \cos A \sin B \\ & = \int_0^\frac \pi 2 {\color{#3D99F6}(\sin(2017x)\cos x +\cos (2017x)\sin x)}\sin^{2016}x \ dx \\ & = \int_0^\frac \pi 2 \left({\color{#3D99F6}\sin(2017x)\cos x\sin^{2016}x +\cos (2017x)\sin^{2017}x}\right) \ dx & \small \color{#3D99F6} \text{See note} \\ & = \frac {\sin(2017x)\sin^{2017}x}{2017}\bigg|_0^\frac \pi 2 \\ & = \frac 1{2017} \end{aligned}

Therefore, I 1 = 2017 I^{-1} = \boxed{2017} .


Note: d d x sin ( 2017 x ) sin 2017 x = 2017 cos ( 2017 x ) sin 2017 x + 2017 sin ( 2017 x ) sin 2016 cos x \dfrac {d}{dx} \sin(2017x) \sin^{2017}x = 2017\cos(2017x) \sin^{2017}x + 2017\sin(2017x) \sin^{2016}\cos x

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...