Notation : denotes the ceiling function .
Clarification : We are finding all the positive divisors that divides 1729.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
First of all We observe that,
If a,b,c are +ve integers & they satisfy 1 0 a < b < 1 0 c then :
a < l o g 1 0 b < c . ............................................................ (1)
Now 1729 = 7.13.19 & Number of divisors of 1729 is (1+1)(1+1)(1+1) i.e 8 including 1 & 1729 .
The 6 factors can be easily listed out except the number and 1 as follows , 7,13,19,91,133,247 .
Observe that,
[ 1 0 1 < 1 3 , 1 9 , 9 1 < 1 0 2 ] & [ 1 0 2 < 1 3 3 , 2 4 7 < 1 0 3 ]
So by (1) we can say that
[ 1 < lo g 1 0 1 3 , lo g 1 0 1 9 , lo g 1 0 9 1 < 2 ] & [ 2 < lo g 1 0 1 3 3 , lo g 1 0 2 4 7 < 3 ]
k ∣ 1 7 2 9 ∑ k ⌈ lo g 1 0 k ⌉ = ?
= 1 ⌈ lo g 1 0 1 ⌉ + 7 ⌈ lo g 1 0 7 ⌉ + 1 3 ⌈ lo g 1 0 1 3 ⌉ + 1 9 ⌈ lo g 1 0 1 9 ⌉ + 9 1 ⌈ lo g 1 0 9 1 ⌉ + 1 3 3 ⌈ lo g 1 0 1 3 3 ⌉ + 2 4 7 ⌈ lo g 1 0 2 4 7 ⌉ + 1 7 2 9 ⌈ lo g 1 0 1 7 2 9 ⌉
since the lo g 1 0 7 lies between 0 & 1 it is 1, lo g 1 0 1 3 , lo g 1 0 1 9 , lo g 1 0 9 1 lie between 1 & 2 so they will equal 2 when subjected to the ceiling.
Similiarly the lo g 1 0 1 3 3 , lo g 1 0 2 4 7 will equal 3 as the lie between 2 & 3 .
= 0 + 7 ( 1 ) + ( 1 3 + 1 9 + 9 1 ) 2 + ( 1 3 3 + 2 4 7 ) 3 + 1 7 2 9 . 4
=8309 .