Runinig dogs

Geometry Level 4

  • Three dogs are located at the three vertices of the equilateral triangle (A, B, C) on the side length of a. At one time, three dogs are at the same time as V, A dog chase B dog, B dog chase C dog C dog chase A dog.

Question one: how long will it take for three dogs to meet? ( Are their trajectories a part of the circle? If it is, prove and seek out the center of the circle, if not, explain the reason and write down your conjecture on the track).

a/3v 3a/2v a/2v 2a/3v

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Joseph Newton
May 16, 2018

Since the entire system is rotationally symmetrical, then if one dog is at polar coordinates ( r , θ ) (r,\theta) , then the next dog around (counterclockwise) will be at ( r , θ + 2 π 3 ) (r,\theta+\frac{2\pi}{3}) . So if the first dog chases the second, the tangent to the path of the first dog's movement must pass through the second dog, i.e. the gradient between the dogs equals the derivative of the curve at the position of the first dog.

Now for polar coordinates ( r , θ ) (r,\theta) , x = r cos θ x=r\cos\theta and y = r sin θ y=r\sin\theta . Since the gradient between two points equals y 2 y 1 x 2 x 1 \frac{y_2-y_1}{x_2-x_1} :

d y d x = r sin ( θ + 2 π 3 ) r sin θ r cos ( θ + 2 π 3 ) r cos θ d y d r d x d r = sin θ cos 2 π 3 + cos θ sin 2 π 3 sin θ cos θ cos 2 π 3 sin θ sin 2 π 3 cos θ d d r ( r sin θ ) d d r ( r cos θ ) = 1 2 sin θ + 3 2 cos θ sin θ 1 2 cos θ 3 2 sin θ cos θ ( d d r r ) sin θ + r ( d d r sin θ ) ( d d r r ) cos θ + r ( d d r cos θ ) = 3 2 sin θ + 3 2 cos θ 3 2 cos θ 3 2 sin θ sin θ + r cos θ d θ d r cos θ r sin θ d θ d r = 3 sin θ cos θ 3 cos θ + sin θ 3 sin θ cos θ + sin 2 θ + 3 r cos 2 θ d θ d r + r sin θ cos θ d θ d r = 3 sin θ cos θ cos 2 θ 3 r sin 2 θ d θ d r + r sin θ cos θ d θ d r 3 r sin 2 θ d θ d r + 3 r cos 2 θ d θ d r = sin 2 θ cos 2 θ 3 r d θ d r ( sin 2 + cos 2 ) = ( sin 2 + cos 2 ) d θ d r = 1 3 r \begin{aligned}\frac{dy}{dx}&=\frac{r\sin\left(\theta+\frac{2\pi}{3}\right)-r\sin\theta}{r\cos\left(\theta+\frac{2\pi}{3}\right)-r\cos\theta}\\ \frac{\frac{dy}{dr}}{\frac{dx}{dr}}&=\frac{\sin\theta\cos\frac{2\pi}{3}+\cos\theta\sin\frac{2\pi}{3}-\sin\theta}{\cos\theta\cos\frac{2\pi}{3}-\sin\theta\sin\frac{2\pi}{3}-\cos\theta}\\ \frac{\frac{d}{dr}(r\sin\theta)}{\frac{d}{dr}(r\cos\theta)}&=\frac{-\frac{1}{2}\sin\theta+\frac{\sqrt3}{2}\cos\theta-\sin\theta}{-\frac{1}{2}\cos\theta-\frac{\sqrt3}{2}\sin\theta-\cos\theta}\\ \frac{\left(\frac{d}{dr}r\right)\sin\theta+r\left(\frac{d}{dr}\sin\theta\right)}{\left(\frac{d}{dr}r\right)\cos\theta+r\left(\frac{d}{dr}\cos\theta\right)}&=\frac{-\frac{3}{2}\sin\theta+\frac{\sqrt3}{2}\cos\theta}{-\frac{3}{2}\cos\theta-\frac{\sqrt3}{2}\sin\theta}\\ \frac{\sin\theta+r\cos\theta\frac{d\theta}{dr}}{\cos\theta-r\sin\theta\frac{d\theta}{dr}}&=\frac{\sqrt3\sin\theta-\cos\theta}{\sqrt3\cos\theta+\sin\theta}\\ \sqrt3\sin\theta\cos\theta+\sin^2\theta+\sqrt3r\cos^2\theta\frac{d\theta}{dr}+r\sin\theta\cos\theta\frac{d\theta}{dr}&=\sqrt3\sin\theta\cos\theta-\cos^2\theta-\sqrt3r\sin^2\theta\frac{d\theta}{dr}+r\sin\theta\cos\theta\frac{d\theta}{dr}\\ \sqrt3r\sin^2\theta\frac{d\theta}{dr}+\sqrt3r\cos^2\theta\frac{d\theta}{dr}&=-\sin^2\theta-\cos^2\theta\\ \sqrt3r\frac{d\theta}{dr}\left(\sin^2+\cos^2\right)&=-\left(\sin^2+\cos^2\right)\\ \frac{d\theta}{dr}&=-\frac{1}{\sqrt3r}\end{aligned}

Before we can use the formula for arc length and find the distance the dogs travelled, we need to know where they start.

Using the cosine rule: a 2 = 2 r 2 2 r 2 cos 2 π 3 a 2 = r 2 ( 2 + 2 1 2 ) r 2 = a 2 3 r = a 3 where r > 0 , a > 0 \begin{aligned}a^2&=2r^2-2r^2\cos\frac{2\pi}{3}\\ a^2&=r^2(2+2\frac{1}{2})\\ r^2&=\frac{a^2}{3}\\ r&=\frac{a}{\sqrt3}&\text{where }r>0,a>0\end{aligned}

Now we can use the formula for arc length to determine the distance the dogs travel between the corner of the triangle and the centre: arc length = a b d x 2 + d y 2 = r = 0 r = a 3 d r 2 ( d x d r ) 2 + d r 2 ( d y d r ) 2 = 0 a 3 ( cos θ r sin θ d θ d r ) 2 + ( sin θ + r cos θ d θ d r ) 2 d r = 0 a 3 ( cos θ + r sin θ 1 3 r ) 2 + ( sin θ r cos θ 1 3 r ) 2 d r = 0 a 3 1 3 ( 3 cos θ + sin θ ) 2 + 1 3 ( 3 sin θ cos θ ) 2 d r = 0 a 3 1 3 3 cos 2 θ + 2 3 sin θ cos θ + sin 2 θ + 3 sin 2 θ 2 3 sin θ cos θ + cos 2 θ d r = 0 a 3 1 3 3 cos 2 θ + sin 2 θ + 3 sin 2 θ + cos 2 θ d r = 0 a 3 1 3 4 ( sin 2 θ + cos 2 θ ) d r = 0 a 3 2 3 d r = [ 2 3 ] 0 a 3 = 2 a 3 \begin{aligned}\text{arc length}&=\int_a^b\sqrt{dx^2+dy^2}\\ &=\int_{r=0}^{r=\frac{a}{\sqrt3}}\sqrt{dr^2\left(\frac{dx}{dr}\right)^2+dr^2\left(\frac{dy}{dr}\right)^2}\\ &=\int_0^{\frac{a}{\sqrt3}}\sqrt{\left(\cos\theta-r\sin\theta\frac{d\theta}{dr}\right)^2+\left(\sin\theta+r\cos\theta\frac{d\theta}{dr}\right)^2}dr\\ &=\int_0^{\frac{a}{\sqrt3}}\sqrt{\left(\cos\theta+r\sin\theta\frac{1}{\sqrt3r}\right)^2+\left(\sin\theta-r\cos\theta\frac{1}{\sqrt3r}\right)^2}dr\\ &=\int_0^{\frac{a}{\sqrt3}}\sqrt{\frac{1}{3}\left(\sqrt3\cos\theta+\sin\theta\right)^2+\frac{1}{3}\left(\sqrt3\sin\theta-\cos\theta\right)^2}dr\\ &=\int_0^{\frac{a}{\sqrt3}}\frac{1}{\sqrt3}\sqrt{3\cos^2\theta+2\sqrt3\sin\theta\cos\theta+\sin^2\theta+3\sin^2\theta-2\sqrt3\sin\theta\cos\theta+\cos^2\theta}dr\\ &=\int_0^{\frac{a}{\sqrt3}}\frac{1}{\sqrt3}\sqrt{3\cos^2\theta+\sin^2\theta+3\sin^2\theta+\cos^2\theta}dr\\ &=\int_0^{\frac{a}{\sqrt3}}\frac{1}{\sqrt3}\sqrt{4\left(\sin^2\theta+\cos^2\theta\right)}dr\\ &=\int_0^{\frac{a}{\sqrt3}}\frac{2}{\sqrt3}dr\\ &=\left[\frac{2}{\sqrt3}\right]_0^{\frac{a}{\sqrt3}}\\ &=\frac{2a}{3}\end{aligned}

Now, time=distance/speed, so

t = 2 a 3 v \large\boxed{t=\frac{2a}{3v}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...